High p_T Measurements from

Saskia Mioduszewski

for the PHENIX Collaboration

Motivation

Effect of nuclear collision medium on hadron p_T spectra

<u>hard-scattered</u> <u>parton from e.g. p+p</u>

cone of hadrons "jet"

p p

<u>hard-scattered</u> <u>parton during Au+Au</u>

hadron distribution softened, broadened?

Outline

- PHENIX overview
- 1. Assume high p_T hadrons from jets
- Particle Spectra
- Nuclear Modification Factor
- Particle Composition at high p_T
- 2. Investigate assumption
- Detecting jets
- 3. Make the connection
- Conclusions

Versatile Detector

- Measurements extend to $p_T = 10 \text{ GeV/c}$
- Excellent PID coverage
- Different measurements provide cross-checks

Charged pions at low p_T

- -- Tracking +
 Time-Of-Flight
- T. Chujo talk
- J. Burward-Hoy talk

$$Au + Au \qquad \sqrt{s_{NN}} = 200 \text{ GeV}$$

Neutral pions at mid to high pT

- -- E-M Calorimeters
- D. d'Enterria talk
- C. Klein-Bösing poster

Charged pions at high p_T

- -- Tracking + Calorimeter erenkov (RICH)
- F. Messer poster

$$Au + Au \qquad \sqrt{s_{NN}} = 200 \text{ GeV}$$

- Most of central arms used to measure the pion spectrum
- Powerful cross-checks of results

$$Au + Au \qquad \sqrt{s_{NN}} = 200 \text{ GeV}$$

1. Assume high p_T hadrons are leading particles of jets

- If hard-scattered partons lose energy in medium, expect suppression at high p_T in hadron spectra
- Suppression is quantified relative to p+p "baseline" scaled by $N_{\rm coll}$
 - -p+p
 - Central Au+Au
 - Ratios → Suppression

p+p Collisions The Baseline

PHENIX π^0 Measurement

H. Torii talk

Central Au+Au Collisions –

Effect of Dense Medium on π^0

D. d'Enterria talk

Spectrum

- Energy dependence of spectrum is shown
- Must be compared to p+p baseline to quantify suppression

Nuclear Modification Factor

$$R_{AA}(p_T) = \frac{1/N_{events} d^2N^{AA}/dp_T dh}{\langle N_{binary} \rangle (d^2s_{pp}/dp_T dh/s^{pp}_{inelastic})} =$$

D. d'Enterria talk

$$\frac{\mathbf{Yield}_{central} / \langle \mathbf{N}_{binary} \rangle_{central}}{\mathbf{Yield}_{pp}}$$

→ Effect of nuclear medium on yields

SPS Cronin effect RHIC - suppression

Our own measure of the p+p spectrum reduces the uncertainty!

Nuclear Modification Factor

$$R_{AA}(p_T) = \frac{1/N_{events} d^2N^{AA}/dp_T dh}{\langle N_{binary} \rangle (d^2S_{pp}/dp_T dh/S^{pp}_{inelastic})} = \frac{1}{\langle N_{binary}$$

D. d'Enterria talk

$$\frac{\text{Yield}_{\text{peripheral}}/\langle N_{\text{binary}}\rangle_{\text{peripheral}}}{\text{Yield}_{\text{pp}}}$$

→ Comparison of peripheral to central

RHIC 200 GeV central -Suppression peripheral N_{coll} scaling

Suppression in Inclusive Photons

Photons (primarily from π^0 decays) also show suppression

 \rightarrow Not an artifact of extraction of π^0 peak yield

Klaus Reygers talk

Theory Comparisons for R_{AA}

- --- Wang dE/dx = 0
- --- dE/dx = 0.25 GeV/fm

Wang: X.N. Wang, Phys. Rev. C61, 064910 (2000).

- --- Levai $L/\lambda = 0$
- --- $L/\lambda = 4$

Gyulassy, Levai, Vitev: P.Levai, Nuclear Physics A698 (2002) 631.

- --- Vitev dNg/dy = 900
- **GLV**, Nucl. Phys. B 594, p. 371 (2001) + work in preparation.

Charged Hadron spectra

Strong shape change with centrality

J. Jia talk

Central to Peripheral Ratio

(A variation on R_{AA})

 $\frac{\text{Yield}_{\text{central}}}{\sqrt{N_{\text{binary}}}_{\text{central}}}$

 Suppression seen in 3 independent measurements

Difference in π⁰/charged h ratio → particle composition

Particle Composition at high p_T

 $\pi^{0}/(h^{+}+h^{-})/2$ ratio ~ 0.5 up to 9 GeV/c

→ do protons continue to make up a large fraction

of charged hadron yield?

Particle composition at high p_T

Proton/pion ~1 at high p_T for central collisions

T. Sakaguchi talk

 In peripheral collisions, ratio ~ 0.4

2. Identifying Jets via Particle Correlations

- Continued suppression in high p_T hadron spectra
- Expect that jet fragmentation dominates production at these p_T
- Do correlations demonstrate jet signal in Au+Au?
 - v₂ analysis (N. Ajitanand talk)
 - Multi-particle correlations (W. Holzmann poster)
 - Two particle correlations: v₂ + near angle term
 - Jet strength utilizing Pythia for correlation shape

Observing Jets via Angular Correlations

• Charged tracks associated with high energy leading photon (>2.5 GeV)

Remove soft background by subtraction of mixed event distribution
 M. Chiu talk

• Fit remainder:

– Jet correlation in $\Delta \phi$; shape taken from Pythia

 In Au+Au, add v₂ component to account for flow effects

In p+p collisions

 $\Delta \phi$

 $\Delta \phi$ (leading photon E>2.5 GeV & charged partner)

In Au+Au collisions

 $\Delta \phi$ (leading photon E>2.5 GeV & charged partner)

PH^{*}ENIX

Fitting near-side correlation width

Correlation width $\propto j_T/p_T$

P. Constantin poster

- Near side correlation of two charged particles in fixed p_T bins
- Jet signal visible via correlation width

3. The Connection....

- Hadron spectra show suppression ~3-8 GeV/c
- Photons with energy > 2.5 GeV (mostly from π^0) show strong evidence for jet contributions

→ Suppression is occuring in a region where hadrons have contributions from jet fragmentation

Centrality Dependence of Suppression

• Nuclear Modification Factor as a function of N_{part}

• Binary-scaled yield as a function of N_{part}

h[±]

Conclusions

- h^{\pm} suppressed by factor 3-4 for $p_T > 4$ GeV/c
- π^0 suppressed by factor ~5 for $p_T > 4$ GeV/c
- Inclusive photons show similar suppression
- Strong evidence for jets
- In central collisions, $p/\pi \sim 1.2$ and $p/\pi \sim 0.9$ at 3 GeV/c
- What is the particle composition at higher p_T ?!!
- No significant "Cronin" effect at RHIC in peripheral collisions
- Suppression gradual with N_{part}

Direct Photon Limit

Klaus Reygers talk

Peripheral

Central

- No direct photon excess within 1σ systematic error
- Working to reduce systematic errors

V2 extended to high pt

talk of S. Esumi

- V2 via reaction plane at η=3-4 and via 2particle correlations agree
 - No jet contamination of reaction plane!
- Low pt as expected from hydrodynamics
- V2 at high pt > 0.15 interpretation at pt>3 GeV/c??

Ratios of p/π and p/π for central vs. peripheral collisions

T. Sakaguchi talk

Charged hadron yields scaled by N_{coll} and N_{part}

Comparison of Pion Measurements in Central and Peripheral Events

p+p Comparison with peripheral PHXENIX

pQCD calculation LEVAI et. al., Y. Zhang, ... PRC65:034903,2002

In Au+Au: fit pythia + $2v_2v_i\cos(2\phi)$

M. Chiu talk

2-4 GeV/c

Δφ

Partner p_T : 0.3-0.6 GeV/c

 $0.6 - 1.0 \, \text{GeV/c}$

1-2 GeV/c

0.015 -3 -2 -1 0 -2 -1 0 1 -3 -2 -1 0 Vch Vtrig Vch Vtrig VchVtrig ,0000 Vch Vtrig 00.00 0.0005 0.0005 0.0005 0.0005 -0.05 0.05 0.05 apythia a_{pythia} a_{pythia} a_{pythia}

Jet strength

See non-zero jet strength as partner p_T increases!