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Some Favorite Statistics

•In the theory of probability and statistics, a statistic is a quantity com-
puted entirely from the sample, i.e. a statistic is any function of the observed
sample values.

•Two of the most popular statistics are the sum and the average:

Sn ≡
n∑

i=1
xi (1)

x̄(n) ≡ 1

n

n∑
i=1

xi =
1

n
Sn (2)

where the xi are n samples from a the same population or probability density
function, f(x).

• From the theory of mathematical statistics, the probability distribution
of a random variable Sn, which is itself the sum of n independent random
variables with a common distribution f(x):

Sn = x1 + x2 + · · · + xn (3)

is given by fn(x), the n-fold convolution of the distribution f(x):

fn(x) =
∫ x

0
dy f(y) fn−1(x − y) . (4)

The mean, µn = 〈Sn〉, and standard deviation, σn, of the n-fold convolution
obey the familiar rule

µn = nµ σn = σ
√

n , (5)

where µ and σ are the mean and standard deviation of the distribution f(x).
• A complementary case is that of a random variable Zn, which is the

sum of n random variables with a common distribution f(x)—which are
themselves 100% correlated—for example:

Zn = x + x + · · · + x = nx . (6)

This is just a scale transformation. The behavior of the mean and the stan-
dard deviation for a scale transformation is µ → nµ, σ → nσ , which is
quite different than the behavior of the standard deviation under convolution
(Eq. 5).
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Some Favorite Functions

The Gamma distribution is an example of a probability density func-
tion (pdf) which has particularly simple properties under convolutions and
scale transformations. The Gamma distribution is a function of a continuous
variable x and has paramters p and b

f(x) = fΓ(x, p, b) =
b

Γ(p)
(bx)p−1e−bx (7)

where
p > 0, b > 0, 0 ≤ x ≤ ∞

Γ(p) = (p−1)! if p is an integer, and f(x) is normalized,
∫∞
0 f(x)dx = 1. The

mean and standard deviation of the distribution are

µ ≡ 〈x〉 =
p

b
σ ≡

√
〈x2〉 − 〈x〉2 =

√
p

b

σ2

µ2 =
1

p
. (8)

The n-fold convolution of the Gamma distribution (Eq. 7) is simply given by
the function

fn(x) =
b

Γ(np)
(bx)np−1e−bx = fΓ(x, np, b) (9)

i.e. p → np and b remains unchanged. Note that the mean and standard
deviation of Eq. 9

µn =
np

b
σn =

√
np

b

σn

µn
=

1√
np

(10)

when compared to Eq. 8 explicitly obey Eq. 5. The result of a scale trans-
formation x → nx for a Gamma distribution (Eq. 7) is simply b → b/n, with
p remaining unchanged. To summarize, the n-th convolution of the
Gamma distribution fΓ(x, p, b) is fΓ(x, np, b); the scale transformation
x → nx of fΓ(x, p, b) is fΓ(x, p, b/n).
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The pT distribution is a Gamma Distribution

The principal advantage of the Gamma distribution for the present prob-
lem is that it is one of the standard representations of the inclusive single
particle pT distribution:

dσ

pTdpT
= b2e−bpT (11)

dσ

dpT
= b2pTe−bpT . (12)

Clearly, Eq.s 11, 12 represent a Gamma distribution with p = 2, 〈pT 〉 =
2/b, where typically b = 6 (GeV/c)−1 for p-p collisions. The ‘inverse slope
parameter’ 1/b is sometimes referred to as the ‘Temperature parameter’.
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Figure 1: PHENIX inclusive pT Not MpT
distribution for 5% most central collisions(black).

Red are 2-component models to be discussed later. Note the limited range of pT used.
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Event by Event Distribution

It’s a Gamma Distribution not a Gaussian

MpT
= pT (n) =

1

n

n∑
i=1

pTi
=

1

n
ETc

ETc =
n∑

i=1
pTi

Analytical formula for statistically independent emission

For statistical independent emission an analytical formula for the distribu-
tion in MpT

can be obtained. It depends on the 4 semi-inclusive parameters
〈n〉, 1/k, b and p which are derived from the quoted means and standard
deviations of the semi-inclusive pT and multiplicity distributions. The result
is in excellent agreement with the NA49 Pb+Pb-central measurement.
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Figure 2: Gamma Distribution for MpT
(yellow) compared Gaussian with same µ and σ

(light blue) for NA49 measurement (filled points) and mixed event distribution (histogram).

see M. J. Tannenbaum, Phys. Lett. B498, 29 (2001)
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Gamma Distribution for PHENIX central MpT
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Figure 3: PHENIX MpT
data for Au+Au central 5% at

√
sNN = 130 GeV compared to

Gamma Distribution calculation from semi inclusive parameters.

f(y) =
nmax∑

n=nmin

fNBD(n, 1/k, 〈n〉) fΓ(y, np, nb) . (13)

This is the analytical formula for MpT
assuming NBD distributed event-by-

event multiplicity, with Gamma distributed semi-inclusive pT spectrum, as-
suming statistically independent emission of particles on each event. It de-
pends on the 4 semi-inclusive paramters 〈n〉, σn, 〈pT 〉, σpT

, where

1

k
=

σ2
n

〈n〉2 − 1

〈n〉

p =
〈pT 〉2
σ2

pT

b =
〈pT 〉
σ2

pT
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PHENIX MpT
vs. Centrality

Now Gamma Distribution Shape is Obvious
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Figure 4: PHENIX MpT
data for Ai+Au at

√
sNN = 130 GeV vs centrality. The dotted

curves are mixed event distributions used as the random baseline.

• Use Mixed Events as a random baseline reference since analytical formula
doesn’t work in general.

• For Mixed Events must use exactly the same n distribution as the
data and match the inclusive 〈pT 〉 to high precision.

• Data indicate very small, if any, non random effect How to Quantify?
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Most Groups Use Moments
(fortunately just µ and σ)

x̄ =
1

n

n∑
i=1

xi

〈x̄〉 = 〈x〉 ≡ µ

σ2
x = 〈x2〉 − 〈x〉2

σ2
x̄ = 〈x̄2〉 − 〈x̄〉2

•For Statistically Independent Emission

σ2
x̄ =

〈σ2
x

n

〉

Typical Measures of Sensitivity

Measured -Random

Random

(
σ2

x̄

µ2
− 1

n

σ2
x

µ2
)/

1

n

σ2
x

µ2

(
σx̄

µ
− 1√

n

σx

µ
)/

1√
n

σx

µ
= F

•For small effects these measures are equivalent

∆σ2

σ2
= 2

∆σ

σ
= 2F
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What the e-by-e average tells you that you
can’t learn from the INCLUSIVE average

♥ e-by-e average separates two or several classes of

events with different µ and σ

♥ e.g. Two-Component Models

Consider a compound distribution with 2 components, of which only

one component appears on any given event. Represent the distribu-

tions as Gamma distributions, for convenience:

fc(pT ) = qΓ(pT , p1, b1) + (1 − q)Γ(pT , p2, b2), (14)

where q and 1 − q are the probabilities for an event to have either

component distribution. Consider 2 simple cases:

A) Same µ different σ. ∆T = 1/b2 − 1/b1

B) Different µ same σ.

A third case related to B has a distribution represented by T = 1/b

which varies continuously from event to event.

B’) Continuously varying T From a recent paper [ R. Korus,

et al. Phys. Rev. C64, 054908 (2001) ] T varies with a mean 〈T 〉
and standard deviation σT .

Note that in all cases the mean and standard deviation

of the compound distribution must equal the measured

inclusive values(recall Fig. 1).

♥ For B and B’ the e-by-e effect is seen at the level of

the moments

σ2
x̄T

µ2
T

=
1

n

σ2
xT

µ2
T

+ (1 − 1

n
)

σ2
T

〈T 〉2 . (15)

If you divide by random, you get an additional factor of n:

F =
p

2
(〈n〉 − 1)

σ2
T

〈T 〉2 , (16)
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where p is the parameter of the inclusive Γ distribution.

♥ For A the e-by-e effect cannot be seen at the level

of the moments. The standard deviation σx̄c, of the compound

distribution scales as 1/n, exactly like the simple distribution, so that

the e-by-e effect can not be seen from the variance.

σ2
x̄c

µ2
=

1

n

σ2
xc

µ2

However the detailed shape of the e-by-e distributions

are different for the simple and compound cases.
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Figure 5: Comparison of the PHENIX baseline mixed event distribution for 5% centrality
(Fig. 4) to the 2-component models (red points). Semi-inclusive pT distribution for data and
models shown in Fig. 1.
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PHENIX limits on ∆T for 2 models
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Figure 6: PHENIX 95% confidence limits excluding ∆T for 2-component distributions in
cases A and B. The curves represent the lower boundaries of the excluded regions.

Centrality class 〈n〉 σn σpT
σMpT

F (%) φpT

(MeV/c) (MeV/c) (MeV/c)

0 - 5 % 59.6 10.8 290 38.6 1.9 ± 2.1 5.65 ± 6.02
0 - 10 % 53.9 12.2 290 41.1 2.0 ± 2.5 6.03 ± 7.28
10 - 20 % 36.6 10.2 290 49.8 2.1 ± 2.2 6.11 ± 6.63
20 - 30 % 25.2 7.8 289 61.1 1.8 ± 3.0 5.47 ± 9.16

Numerical Values of PHENIX results.
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Φ—The variable I love to hate.

From NA49 and Gazdzicki and Mrowczynski Z. Phys. C54, 127

(1992):

ΦpT
= F × σpT

In words, ΦpT
multiplies the fractional difference between the e-by-e

σMpT
and the random baseline by the INCLUSIVE σpT

.

Suppose the e-by-e σ is ∼ 1% of the inclusive σ and you find a 1%

difference in the e-by-e σ from random, why would you claim that

this is equivalent to Φ = 1% of the inclusive σ, which in this example

equals the ENTIRE e-by-e σ ???

BUT
The PHENIX result illustrates exactly what Φ is supposed to be

good for: It is supposed to correct out the centrality dependence.

PHENIX data show F = constant, independent of centrality, which

is non-intuitive to me but gives Φ independent of centrality?

Interestingly STAR sees the same effect.
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Figure 7: Star results for F vs n [nucl-ex/0109006], where I have assumed that σ2
〈pT 〉,stat/µ

2 =
1/(np) = 1/2n, in which case the label on the y axis is equal to F

• But, I think Star result for F is 6 times larger than PHENIX’ !

Clearly, much left to be understood.
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Conclusions.

• PHENIX data indicate very small, if any, non-random
effect. Similar to NA49 at mid-rapidity at SPS.
• Both PHENIX and NA49 central MpT

distributions
agree with Gamma distributions calculated assuming sta-
tistically independent particle emission from the semi-
inclusive pT distribution.
• PHENIX and STAR limits/measurements for non-

random fraction of σMpT
are both independent of central-

ity
BUT

♠ Appear to disagree by a factor of 6 where they
overlap.
• Continue looking for smaller fluctuations— Especially

the known Bose-Einstein correlation/fluctuation, to prove
the sensitivity, and hopefully to discover something.


