Charge Fluctuations at Mid-Rapidity in Au+Au Collisions in the PHENIX Experiment at RHIC

Joakim Nystrand Lund University

for the PHENIX Collaboration

Event-by-event fluctuations in

- Charged particle multiplicity, n_{ch} = n₊ + n₋
- Net charge, $Q = n_{+} n_{-}$
- Transverse momentum, p_T

PH***ENIX** Measures of net charge fluctuations

Charged particle multiplicity

$$n_{ch} = n_{+} + n_{-}$$

Net charge

$$Q = n_{\perp} - n_{\perp}$$

Define:

$$v(Q) \equiv \sigma^2(Q)/\langle n_{ch} \rangle$$

For stochastic emission, v(Q) = 1

Globally, one expects v(Q) = 0 - charge conservation

If we observe a fraction p of all produced particles \Rightarrow v(Q) = (1 - p) from global charge conservation

PH **ENIX**

Hadron gas: $v(Q) \approx 0.7 (1 - p)$ QGP: $v(Q) \approx 0.25 (1 - p)$

in a rapidity window $\Delta y \sim 1$

Other measures have been proposed:

$$\begin{split} v(R) &= < n_{ch} > \sigma^2(R) \;, \; where \; R = n_+ \, / \; n_- \\ \Gamma &= < (Q - \epsilon \; n_{ch})^2 > / < n_{ch} > \\ v &= 4 < (n_+ \; (1 - \epsilon \;) - n_- \; (1 + \epsilon \;))^2 > / < n_{ch} >^2 \end{split}$$

 ε is the charge asymmetry, $\varepsilon = <Q>/<n_{ch}>$

v(R) not suitable for small accpetances

 Γ , ν similar to $\nu(Q)$, for $\epsilon=0$

$$v(Q) = \Gamma = \langle n_{ch} \rangle v / 4$$

Centrality Selection

Select events based on ZDC and BBC information.

n_{ch} and Q distributions for centrality classes (5% bins).

v(Q) as a function of collision centrality

A small deviation from stochastic emission observed at 130 GeV K. Adcox et al. (PHENIX) nucl-ex/0203014 to appear in PRL

No dramatic change at 200 GeV - the upward shift of ~0.01 units can be explained by harder track quality cuts leading to a reduced acceptance.

Decrease $\Delta \varphi$ v(Q) vs. $\Delta \varphi_d$

130 A GeV - 10% most central events

Nearly linear decrease in v(Q) with $\Delta \phi_d$, well reproduced by RQMD--presumably due to correlations from resonance decay. Stronger decrease than expected from charge conservation.

Result for v(Q)

For $|\eta| < 0.35$, $p_T > 200$ MeV/c, $\Delta \phi = \pi/2$

$$v(Q) = 0.965 \pm 0.007(stat.) - 0.019 (syst.)$$
 $\sqrt{s_{nn}} = 130 \text{ GeV}$

$$v(Q) = 0.969 \pm 0.006(stat.) \pm 0.020 (syst.)$$
 $\sqrt{s_{nn}} = 200 \text{ GeV (PRELIMINARY)}$

Systematical error estimated from geant simulations (reconstruction efficiency and contribution from background tracks), and by comparing the results for the 2 arms (200 GeV).

The fluctuation magnitude tends to increase as the p_T range used to calculate $\langle p_T \rangle$ is extended to higher values.

 F_T vs. P_T range $(0.2 < p_T < p_{T. max})$

Centrality and p_T dependence similar to elliptic flow. Simulations using PHENIX preliminary p_T -dependent v_2 measurements wrt to the reaction plane can, however, not reproduce the signal.