Event-by-Event <P_T> **Fluctuations in PHENIX**

Quark Matter 2002

Jeffery T. Mitchell (Brookhaven National Laboratory)

Analysis Details

Data:

- The average p_T are determined on an event-by-event basis.
- Improvements over the $\sqrt{s_{NN}}$ = 130 GeV analysis include:
 - 3x increase in azimuthal aperture. 2x event statistics.
 - Enhanced background rejection from the additional detectors.

Mixed Events:

- Mixed events serve as the random baseline distributions.
- Mixed event distributions are built from reconstructed tracks in real data events from the same centrality/multiplicity and event vertex class.
- No two tracks from the same real event are allowed in the same mixed event.

Important Note: Matching mixed events to data events

Since the width of the $\langle p_T \rangle$ distribution depends on $\langle N \rangle$, it is important that there is an exact match of the $mixed\ event < N >$ distribution to the data < N >distribution. The mixed events are constructed by sampling the data <N> distribution.

Mixed events as the random baseline distribution

<P_T> distributions

F_{pT} as a function of centrality

The fluctuation magnitude follows a decreasing trend for peripheral collisions.

F_{pT} vs. <N_{tracks}>

Using the same centrality binning as in the previous figure.

"Different Mean, Same Variance" Model Demonstration

Summary and Conclusions

- With the increased PHENIX azimuthal aperture and improved background rejection, a positive non-random fluctuation in event-by-event average p_T is now observed. The fluctuations tend to decrease for peripheral collisions.
- The magnitude of the fluctuation tends to increase slightly with increasing p_T range. Possible causes for this trend await further investigation.
- The contribution of elliptic flow into the PHENIX azimuthal acceptance is estimated (via Monte Carlo simulation using PHENIX preliminary p_T-dependent v₂ measurements wrt to the reaction plane) to be on the order of –0.3% for mid-central collisions, thus not accounting for the observed signal.
- The magnitude of the fluctuations within a pair of dual-event-class models processed through the PHENIX acceptance are estimated to be on the order of $\Delta T = 10\text{--}20 \text{ MeV}$.