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Some Favorite Statistics

•In the theory of probability and statistics, a statistic is a quantity com-
puted entirely from the sample, i.e. a statistic is any function of the observed
sample values.

•Two of the most popular statistics are the sum and the average:

Sn ≡
n∑

i=1
xi (1)

x̄(n) ≡ 1

n

n∑
i=1

xi =
1

n
Sn (2)

where the xi are n samples from a the same population or probability density
function, f(x).

• From the theory of mathematical statistics, the probability distribution
of a random variable Sn, which is itself the sum of n independent random
variables with a common distribution f(x):

Sn = x1 + x2 + · · · + xn (3)

is given by fn(x), the n-fold convolution of the distribution f(x):

fn(x) =
∫ x

0
dy f(y) fn−1(x − y) . (4)

The mean, µn = 〈Sn〉, and standard deviation, σn, of the n-fold convolution
obey the familiar rule

µn = nµ σn = σ
√

n , (5)

where µ and σ are the mean and standard deviation of the distribution f(x).
• A complementary case is that of a random variable Zn, which is the

sum of n random variables with a common distribution f(x)—which are
themselves 100% correlated—for example:

Zn = x + x + · · · + x = nx . (6)

This is just a scale transformation. The behavior of the mean and the stan-
dard deviation for a scale transformation is µ → nµ, σ → nσ , which is
quite different than the behavior of the standard deviation under convolution
(Eq. 5).
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Some Favorite Functions

The Gamma distribution is an example of a probability density func-
tion (pdf) which has particularly simple properties under convolutions and
scale transformations. The Gamma distribution is a function of a continuous
variable x and has paramters p and b

f(x) = fΓ(x, p, b) =
b

Γ(p)
(bx)p−1e−bx (7)

where
p > 0, b > 0, 0 ≤ x ≤ ∞

Γ(p) = (p−1)! if p is an integer, and f(x) is normalized,
∫∞
0 f(x)dx = 1. The

mean and standard deviation of the distribution are

µ ≡ 〈x〉 =
p

b
σ ≡

√
〈x2〉 − 〈x〉2 =

√
p

b

σ2

µ2 =
1

p
. (8)

The n-fold convolution of the Gamma distribution (Eq. 7) is simply given by
the function

fn(x) =
b

Γ(np)
(bx)np−1e−bx = fΓ(x, np, b) (9)

i.e. p → np and b remains unchanged. Note that the mean and standard
deviation of Eq. 9

µn =
np

b
σn =

√
np

b

σn

µn
=

1√
np

(10)

when compared to Eq. 8 explicitly obey Eq. 5. The result of a scale trans-
formation x → nx for a Gamma distribution (Eq. 7) is simply b → b/n, with
p remaining unchanged. To summarize, the n-th convolution of the
Gamma distribution fΓ(x, p, b) is fΓ(x, np, b); the scale transformation
x → nx of fΓ(x, p, b) is fΓ(x, p, b/n).
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The pT distribution is a Gamma Distribution

The principal advantage of the Gamma distribution for the present prob-
lem is that it is one of the standard representations of the inclusive single
particle pT distribution:

dσ

pTdpT
= b2e−bpT (11)

dσ

dpT
= b2pTe−bpT . (12)

Clearly, Eq.s 11, 12 represent a Gamma distribution with p = 2, 〈pT 〉 =
2/b, where typically b = 6 (GeV/c)−1 for p-p collisions. The ‘inverse slope
parameter’ 1/b is sometimes referred to as the ‘Temperature parameter’.
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Figure 1: PHENIX inclusive pT Not MpT
distribution for 5% most central collisions(black).

Red are 2-component models to be discussed later. Note the limited range of pT used.
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Event by Event Distribution

It’s a not a Gaussian, it’s a Gamma Distribution

MpT
= pT (n) =

1

n

n∑
i=1

pTi
=

1

n
ETc

ETc =
n∑

i=1
pTi

ET =
n∑

i=1
eTi

Analytical formula for statistically independent emission

For statistical independent emission an analytical formula for the distribu-
tion in MpT

can be obtained. It depends on the 4 semi-inclusive parameters
〈n〉, 1/k, b and p which are derived from the quoted means and standard
deviations of the semi-inclusive pT and multiplicity distributions. The result
is in excellent agreement with the NA49 Pb+Pb-central measurement.
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Figure 2: Gamma Distribution for MpT
(yellow) compared Gaussian with same µ and σ

(light blue) for NA49 measurement (filled points) and mixed event distribution (histogram).

see M. J. Tannenbaum, Phys. Lett. B498, 29 (2001)



M. J. Tannenbaum, Current and Future Directions at RHIC, summer 2002 6

It’s a not a Gaussian, it’s a Gamma Distribution
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PHENIX MpT
vs. Centrality

Now Gamma Distribution Shape is Obvious
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Figure 3: PHENIX MpT
data for Ai+Au at

√
sNN = 130 GeV vs centrality. The dotted

curves are mixed event distributions used as the random baseline.

• Use Mixed Events as a random baseline reference since analytical formula
doesn’t work in general.

• For Mixed Events must use exactly the same n distribution as the
data and match the inclusive 〈pT 〉 to high precision.

• Data indicate very small, if any, non random effect How to Quantify?
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Most Groups Use Moments
(fortunately just µ and σ)

x̄ =
1

n

n∑
i=1

xi

〈x̄〉 = 〈x〉 ≡ µ

σ2
x = 〈x2〉 − 〈x〉2

σ2
x̄ = 〈x̄2〉 − 〈x̄〉2

•For Statistically Independent Emission

σ2
x̄ =

〈σ2
x

n

〉

Typical Measures of Sensitivity

Measured -Random

Random

(
σ2

x̄

µ2
− 1

n

σ2
x

µ2
)/

1

n

σ2
x

µ2

(
σx̄

µ
− 1√

n

σx

µ
)/

1√
n

σx

µ
= F

•For small effects these measures are equivalent

∆σ2

σ2
= 2

∆σ

σ
= 2F

•PHENIX uses Mixed Events as Random Baseline

with exactly the same n distribution as the data and

with the inclusive 〈pT 〉 = µ matched to high precision.

(
σx̄

µ
− σx̄−mixed

µ
)/

σx̄−mixed

µ
= F


