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|. Intro.: factorization & coherence in perturbative QCD

e From factorization to resummation

Q 0phys(Q,m) = wsp(Q/ 1, as(w)) ® frp(p,m) + O (1/QF)

— 1 = factorization scale; m= IR scale (m may be perturbative)

— New physics in wsp; fi,p “universal”



e Whenever there is factorization, there is evolution

d
0= ,u@ In opnys(Q,m)
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e Wherever there is evolution there is resummation

Q /
I e (Q, m) = exp { / ‘%P <as<u'>>}



¢ Infrared safety & factorization proofs:
— (1) wgp incoherent with long-distance dynamics

— (2) Mutual incoherence when v, = c:
Jet-jet factorization

— (3) Wide-angle soft radiation sees only total color flow:
jet-soft factorization = angular ordering & MLLA

— (4) Dimensionless coupling and renormalizability
< no worse that logarithmic divergence in the IR:
fractional power suppression = finiteness



Il. Vector bosons: ()7 and its factorization

Every final state from a hard scattering carries the imprint
of QCD dynamics from at all distance scales

— Look at transverse momentum distribution at order o,

q(p1) + q(p2) — v (Q) + g(k),

— Treat this 2 — 2 process at lowest order (o) “LO”
in factorized cross section, so that k = —Q



— Factorized cross section at fixed Q:

dUNN—wm +X (@, p1,p2) / aa—>,u+,u (Q)+X(Q ts §1P1, §2p2, Q)
dQ2d2Q .6 o dQ?*d?Qr

X fa/n(&1, 1) fayn (€2, 1)

— Recall: 1 is the factorization scale that separates
IR (f) from UV (d&) in quantum corrections.

— 1 appears in ¢ through o (p) and In(u/Q)
so choosing i1 ~ () can improve perturbative predictions.

— Evolution: pdf (z, 1) /dp = [, P(x/€) £(¢, 1)
makes energy extrapolations possible.



— The diagrams at order o
Gluon emission contributes at () # 0

Virtual corrections contribute only at ()7 =0

Pl e

— The result is finite for Q #0 . ..
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as long as Q1 # 0, 2 = Q?/£,65 # 1.
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Both singularities cancel in the inclusive cross section.
Both inspire resummation of higher order corrections.



The leading singularity in Q7
— As we’ll see later: 1 — 2z ~ 2ky/Q > 2|k7|/Q

— z integral: If Q?/S not too big, PDFs nearly constant:

IR VIC P [ Q2 ]
. — _ In|=>_
chr /1622/5 1 —2 QT Q

= Prediction for ()7 dependence:

dO-NN—>,u+,u_—|—X(Q7 QT) a,Cr 1 In [ Q2 ]
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— Compare to: Z pr from Tevatron Run |

sl | d9/d% (pb/GeV) T oor -
B \ 66 < Q< 116 GV
Resum | .
\ M, Exclusive Limit

Y <— Resum+power
10 H I

(from Kulesza, G.S., Vogelsang (2002))

— In Q7 /Qr works pretty well for large Q1

— At smaller ()7 reach a maximum, then a decrease
near “exclusive” limit (parton model kinematics)

— Most events are at “low” Q1 < QQ = my.



Getting to Q1 < Q: Transverse momentum resummation
(Logs of Q7)/Qr to all orders
How? Variant factorization and separation of variables

g and ¢ “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and ¢ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

dO-NN—>,u‘|‘,u_—|—X(Q7 QT)

dQ?*d*Qr




Summarized by: ()p-factorization:

AdONN—QX

dQd*Qr

H X Pyn(&1,01 - 0, kir) Payn (&2, 02 -, ko)
®£i7kiT Uaa(kSTa n)

We will solve for the k1 dependence of the P’s.

New factorization variables: n" apportions gluons k:

pzk<nk = k P
pa'k;pa'k > n-k = keU

Convolution in k; s = Fourier ¢/97"



The factorized cross section in “impact parameter space”:

doyn—gx(@Q,b)
e [ deade:

X H(glpla 52]?27 Qan)ad%Q—kX
XPa/n(&1, P11, 0) Payn(§2, 02 - 1, 0) Uga(b, n)

Now we can resum by separating variables!

the LHS independent of ;i..,, n = two equations

do do
ren ; 0 = 0
8 dfiren " dne



Solve and transform back to Q7 : all the (Logs of Q7)/Q:

— —

dO'NNres L B 2 d2b iGp-b N PT
G i~ o Hua(ea(@)) [ e [£1100.0.00
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“Sudakov” exponent suppresses large b < small Q):

Q% ;1.2 2
Br = [ 2 [2Aq<cvs<kT>> In (%) +2Bq<as<kT>>]
1/b2 kT kT

With B = 2(K + G),,—p.n, and lower limit: 1/b (NLL)



+ Comments:

The functions A;(a;) and B;(as) are anomalous
dimensions.

And can be calculated by comparison to low orders.

In particular, A;(«a;) is the numerator of
the 1/(1 — z) term in splitting function P;;(x)

because it’s the infrared divergent (r — 1) coefficient of
the collinear b — oo singularity.

2

A0 =20, (1 + BK 4 .), K=Ca (8 - %) -t



Evaluating a resummed cross sections: re-enter NPQCD.
We start with:

PPT _ /1Q2 dkz leq(as(kT)) In (%j) + Bq(%(kT))]

/b2 k%

With running coupling:




*x Problem: how to do the inverse transform with the
running coupling when k'™ ~ 1/b gets small?

x At least four approaches:

1) Work in QQp-space directly to some approximation
The originals: Dokshitzer, Diakanov & Troyan
Revived by Ellis & Veseli Kulesza & Stirling

who re-derived it from b-space.

2) Insert a “soft landing” on the kL integral by replacing
1/b— \/1/b2 4 1/b2

for some fixed b.. (CS, CSS “b,” prescription, ResBos)




3) Extrapolation of E*'! into NP region (J.W. Qiu, X.F. Zhar

4) Minimal: avoid the singularity at 1/b = Aqcp

by monkeying with the b-space contour integral.
(This technique introduced in threshold resummation;
then adapted by Laenen, GS and Vogelsang,

and Bozzi, Catani, de Florian and Grazzini.)

Any of these “define” PT. All will fit the data
qualitatively, and with a little work quantitatively.

But all require new parameters for quantitative fit.
This is not all bad . . . let’s see why.



2
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. /O“I d:; (b - kp)2 A, (as(kr)) In (?j) L

~ — B2 /dk?p Aq(as(kr)) In (%)

Esoft _

0(kr — 1/b) = (e®kr —1); in fact, correct to all orders,

Note the expansion is for b “ small enough” only.



. 2
What is  — b2 [dk2 A (a,(kr)) In (g—%) ?
Don’t really know, but it suggests IR gluons
organize to a simple form & give a nonperturbative
correction like (exhibiting the 1 ; is unconventional)
Perturbative strong coupling is a mirage?

ENY = — bug (91 In (Q) + 92)
K1

Since this is an exponent, whatever the definition

of the pertrubative resummed cross section, it is
smeared with a Gaussian whose width in b (k1) space
decreases (increases) with In Q).



In summary

do(Qr) ZH o Q2))/ d?b Q70 yEqs (0,Q.1) — b’ (91 ln(Q)+gz)
dQ2d*Qr 4 (27)*

da—ac‘t—> + (Qa:u)
‘& [ TR €18 a1/

o / oy e~k /AluG (92 0(Q/kT)+92)] Gy (Qp — k)
pr— T =
p7(92In(Q/kr) + g2) dQ? d2Qr



Which gives curves like the one we saw before.

10 [

do/dQr (pb/GeV)

66 < Q < 116 GeV

Exclusive Limit

ECDF




Successful phenomenology for W and Z.
In principle, can also fit to fixed-target Drell-Yan with
the same set of NP parameters.

Qiu and Zhang show that NP corrections are
dominant for fixed-target Q.

Next — what about those 1/(1 — 2) (soft gluon energy)
singularities?

+ Continue with threshold resummation . ..



V. Threshold resummation

e Back to the one-loop DY hard-scattering

~(1 _
daéqL,Y 9 _ asCr - 4Q2T 1/2
dQ? d2Qr e (1 — 2)26:6,S
y 1 1422 B 2z
21—z (1-2)@Q?

e Factorized cross section at fixed Q:

don Nt p—+x(Q, P1,p2) / A6 ozt Q)+ x (Q; 11, §101, §2p2, Q)
dQ2d2Q 6 o dQ*d*Qr

X fa/N(fla /) fa/N(an /)

2z — 1 is called “partonic threshold”.



e T hreshold resummation is resummation
for the plus distributions.

e Same method as for Q7, but now fix k5" ~ (1 — 2)Q.

Laplace or Mellin transform e~ V2%0/@ ~ 2N and MS
collinear subtraction gives (here NLL accuracy shown)

exp[ B3 (N, Q) :

Q’ du? Nu
EM (N Q) = / —— 24, (o In —
MNQ) = [ 2alan(w) In



e Inverse transform to the cross section:

dores A AN (Q*\ " thr
C(Z)-gé\] — ; O-C(LO)(Q7ILL) /CN 2_7'('2 (F) eXp [Eah (Nvau)}

Xfa/N(Nmu) fc_L/N(Nmu)

Formalism is similar for W, Z, H. “Electroweak annihilation”

Typical collider result . ..



e Logs: threshold resummation vs. fixed order for H at LHC

60 m

LHC MRSTZ2002 |

a(pb)

100 150 200 250 300

(from Catani, de Florian, Grazzini, Nason (2003))

e Modest change & decrease in u-dependence
— increased confidence. But see V.)



IV. Resummation with Color Exchange

¢ Resummed amplitudes in dimensional regularization

(Catani (1998) Tejeda-Yeomans & GS (2002) Kosower (2003)) Aybat, Dixon & GS (2006)

— Amplitude for partonic process

f:  falpa,ra)+ fe(pB,7B) — fi(P1,71) + f2(p2,72)

c Q? f Q’
M&iz} (pj7 F? as(p?), 6) N M[L] (pj7 ﬁ’ (1) 6) (CL){W}

e Need to control poles in ¢ for factorized calculations at
fixed order and for resummation



Example of (cp)y, 1

1 3 1
2 1 2

— Jet/soft factorization (Sen (1983)):

2 2
M ae) = T2 (Lad)e)

1=A,B,1,2

f Q2 f Q2
X S[L]I (pza ?7 OéS(IuQ)a E) h[I] (@u Fa &S(M2)>




— Soft function labelled by color exchange
(singlet, octet . . . )

— Factors require dimensional regularization
— Same factorization — resummation
— Poles at 2- and higher loops . . .

— Relation to supersymmetric Yang-Mills theories

Bern, Dixon, Kosower & Smirnov (2004) verified structure to 3 loops



— Dimensionally-regularized jets
(Magnea & GS (1990))

2 1 -Q” d 2 .
Ji (%7&8(/’L2)76> — exp{ Z/O fiz K[Z](&S(NQ)ae)

2
_|_g[z] <_17as (%7QS(N2)7€7> 6)
5 -
Ldp? g - (1
AL o (o))

- vk, K related to A above, G + K to B



— Dimensionally-regularized S

INGE

2
1 79 dp?
0

anomalous dimension; color mixing




e Color Mixing (pate (1983) Sen (1983) . ..
Kidonakis & GS (1996) Bonciani et al. (1998,2003) Dokshitzer & Marchesini (2005)

Aybat, Dixon, GS (2006))

— Cross sections & amplitudes:
NLL exponentiation in basis that diagonalizes T

dm

exp | — [)\(f) (as(m))}

m

— [f] color exchange basis, \s: eigenvalues of I'g



— Example: f: g+ 9g—9g+g¢

Tr |14,16,10,1s, | and 5 perms
| T0, Ty, Tr [T,,1,,] and 2 perms

— Color mixing governed by a 9x9 matrix



—g9g+tg9g—9g+g

(Kidonakis, Oderda, GS (1998), Bern, Dixon, Kosower (2000) Anastasiou, Glover, Oleari, Tejeda-Yeomans (Z

( T 0 0 0 0 0 -~ ‘& 0 )
o U 0 0 0 0 0 55 -~
0 0 T 0 0 0 -~ ‘& 0
0 0 0 (T'+U) 0 0 ~ 0 %
ri)=ca| o 0 0 0 U 0 0o UL L
0 0 0 0 0 (T+U) 0 &
Y 0 & 0 A 2 0 0
-~ v 0 — 0 0 0 0
\ 0 &I o L Lz U 02U |



— New result for all massless 2 — n processes (Aybat, Dixon, GS (2006))

L= (1+22K) 1) + -
TC TC

I'® = (K/2)I'Y) with same K as in the DGLAP splitting.

Related to the “CMW"” or bremsstrahlung scheme.

(Catani, Marchesini & Webber (1990))

To NNLO, “single-web” exchange generalizes single gluon.
(C.F. Berger, 2002)
Another indication of simplification for IR gluons.



V. Generalizations and limitations
A) Factorization with no hard scattering: BFKL

(Sen (1980) Balitsky (1996) Kucs (2003) . . . related to saturation, colored glass condensate)
— Regge limit in PT for elastic scattering: ps + pp — P/, + P

M(t,s):  —(ph—pp)* —t<s=(Pa+pp)

m—1 £—1
M(t,s) = Z/ (H dD2/€u> H d”?p;.1

(m)ay...a
XFA m(pA7 q,n, li_a c ey ka_)
S’(mf) - L Lo -
X al...an,bl...bell(Q7n’ 1Ly s knliPiL, - s Pml)

£)by...bm
XF(B) ! (p37Q7n;p1J_a IR 7p£J_)



— Factorization at fixed rapidity separation:

Jets, I'4 p & soft, S; no H. Introduce vector n* as above.
— Evolution equations (in In s ~ rapidity ~ In(1/x)) give
— generically m convolutions at N"'LL

(pATLapAn—1> F%) 1 e(pA7Q7n; li_,...,ng_) —

Z / H dD_QljJ— nggl’.r.r.b)an; bi... bm(liJ llJ-? o5 4, n)

X ngm) o bm(pA, qn;lig...)

— Can project onto different color exchange:
octet, m = 0 LL reggeized gluon
singlet, m = 1, BFKL LL pomeron ordered in rapidity, not £k ...



B) Non-global logs: color and energy flow

(Dasgupta & Salam (2001) .. .)

Jet 2

— Simplest cases: 2 jets. Measure distribution Y (F)

— Very interesting case: energy flow between jets
in WW fusion to H.



— Choices for Cross Section:
— a) Inclusive in @ — Number of jets not fixed!
— b) Correlation with event shape 7, . . . :

fixes number of jets — factorization

(Berger, Kucs, GS (2003), Dokshitzer, Marchesini (2003), Banfi, Salam, Zanderighi (2004,5))



— Contrast: for number of jets not fixed: nonlinear
evolution! The approximate evolution equation for X :
(Banfi, Marchesini, Smye (2002)) LL in E/Q, large-N_) Define: aA = F ((9/(9E)

OAYap(E) = —0aRp Xap(E) + / AN gp—1 (XarXkb — Zab )

k not in 2

A, Ba - B

AN p_1. =
TR 4 B By B Ba

(“dipole source”)

Q@ AE
R, E/ / /dNab_%, (suppression due to
E L' Jo

uncancelled virtual gluons)



— Origin of the nonlinearity
* O can come from unobserved “hard” gluon G (k).
+ New hard gluon G (k) acts as new, recoil-less source.
+ Large- N, limit: g(a)G(k)q(b) sources — q(a)q(k) ® G(k)q(a).
x “Global” event shapes don’t allow an extra hard gluon.
(observed everywhere), but fixing an event shape

may limit the number of events.

+x We are far from a full understanding.

Forshaw, Kyrieleis, Seymour, 2006: “superleading” logs



C) Large threshold effects in observed hadrons
— Pions at fixed target and RHIC (Vogelsang and de Florian, 2004)

d
pT O-ajT Z/ dxlfa/Hl X1, ,MF)/ dx?fb/Hg (ZCQMM%')

a,b,c

1
></ dzzzDh/c (z,,u2F)
0

1 N+ 24 & 15 22
< / d:%T(S(:%T— o ) / dp 1 # d0ab—cx (7, 1)
0 z2\/T1T2 ) Jj_ 2 dx7dn

7: pseudorapidity at parton level



— Averages for distribution z and fragmentation z’s

O s e e B A

<z>

04 -

0 <x>—m° . -
r <xX>-j et ]

0.0 I A A A A | A A A A | A A A A | A A A A
0 5 10 15 20

pr / GeV
RHIC 200 GeV midrapidity average z for pions, and average x for pions,
photons, jets at (NLO). Thanks to Werner Vogelsang.
— Large 2z enhances threshold singularities.




— Singularities at one loop:

A

A T ~ 12(0
S dO_c(L}))—mX (U7 ’U)) —~ S dUC(Lb)—>cd(U>

dv dw ~ dv

(i),

— For resummation, take 72" moments — factorization:

1l —w

A'5(1—w)+ B (1]“(1 - w>)+

1) (N) = Capseq A% Al A TS

ab—cd

int)ab—cd| ~(Born
Z GCILb—>Cd A§ ]\17:) ] O-C(Lb—w;(N)
1

— A typical NLL resummed factor:

1 _N-—1 (1-2)2Q% ; 2
2 —1 dq 5
N = Aa s
N — €Xp [/0 1_ > /“ 7 (avs(g ))]

2
FI

A=Cplas/m)(1+ K(as/7)) + ...




— Invert the moments: resolve a long-standing fixed-target
vs. collider puzzle.

103 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 3 "
i pp - T0+X  EPo/dp® (nbiGeVv?) ] - pp o 04X EPordp® (mb/Gev?)
10 ZE_ E E
B 3 ra
b 1 1F — (=1
oM, ] 0 L, i=2
L :
g -3f
107" 4 0
o 3
10 E 3 _5:
§ 10 3
10 '35 4 i
4 g
10 ¢ 3 107k
o "RHICVs=200GeV |n|<0.35
10 FE706 Vs=31.5GeV | | < 0.75 -\ 2\ E EMRST2002 KKP
4 MRST2002 KKP of

10

3 4 5 6 7 8 T T} 1 2 3 4 5 6 7 8 9 10
p(GeV) p(GeV)



- Vs=3L5GeV

Resummed

10

10%

108-

106j

102

10

-2

1045*‘\

T RHICVs200GeV

pp - T+X  pildol/dp, (NblGeV?)

E706 Vs=31.5 GeV

MRST2002 KKP al| n|

3

4 5 6 7 8
p(GeV)

— Left: expansion of resummed cross section to fixed orders.

— Right: exact NLO vs. NLO expansion.

— Shows in 7 1PI cross sections threshold resummation is
more accurate and more important in fixed target range.



Conclusions/Summary

— Resummation is absolutely necessary for many distributions
(@1, event shape) just one step away from inclusive cross
sections, because most events are found in regions with
ordered scales (Q7 < Q, Mjet K Ejet)-

— It induces the form of certain NP effects.

— Resummations reflect quantum incoherence.

— Resummation with color exchange displays surprising
simplicity, at least at NNLL/pole. (Hint of duality?)

— The soft limit of multigluon exchange may be
simpler than suggested by the growing perturbative coupling.

— Many puzzles remain, especially connected to energy flow
for non-global cross sections.



