At the Limits of Perturbative QCD

Workshop on Future Prospects of QCD

BNL, July 21, 2006

George Sterman

OUTLINE

I. Introduction: factorization and coherence in pQCD
II. Case study: Q_{T} \& and its factorization
III. Threshold resummation
IV. Evolution of color exchange
V. Generalizations and limitations
I. Intro.: factorization \& coherence in perturbative QCD

- From factorization to resummation

$$
Q^{2} \sigma_{\mathrm{phys}}(Q, m)=\omega_{\mathrm{SD}}\left(Q / \mu, \alpha_{s}(\mu)\right) \otimes f_{\mathrm{LD}}(\mu, m)+\mathcal{O}\left(1 / Q^{p}\right)
$$

$-\mu=$ factorization scale; $m=\mathbf{I R}$ scale (m may be perturbative)

- New physics in ω_{SD}; f_{LD} "universal"
- Whenever there is factorization, there is evolution

$$
\begin{aligned}
0 & =\mu \frac{d}{d \mu} \ln \sigma_{\mathrm{phys}}(Q, m) \\
\mu \frac{d \ln f}{d \mu} & =-P\left(\alpha_{s}(\mu)\right)=-\mu \frac{d \ln \omega}{d \mu}
\end{aligned}
$$

PDF f or Fragmentation D

- Wherever there is evolution there is resummation

$$
\ln \sigma_{\mathrm{phys}}(Q, m)=\exp \left\{\int_{q}^{Q} \frac{d \mu^{\prime}}{\mu^{\prime}} P\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right\}
$$

- Infrared safety \& factorization proofs:
- (1) ω_{SD} incoherent with long-distance dynamics
- (2) Mutual incoherence when $v_{\text {rel }}=c$: Jet-jet factorization
- (3) Wide-angle soft radiation sees only total color flow: jet-soft factorization \Rightarrow angular ordering \& MLLA
- (4) Dimensionless coupling and renormalizability \Leftrightarrow no worse that logarithmic divergence in the IR: fractional power suppression \Rightarrow finiteness

II. Vector bosons: Q_{T} and its factorization

Every final state from a hard scattering carries the imprint of QCD dynamics from at all distance scales

- Look at transverse momentum distribution at order α_{s}

$$
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow \gamma^{*}(Q)+g(k),
$$

- Treat this $2 \rightarrow 2$ process at lowest order $\left(\alpha_{s}\right)$ "LO" in factorized cross section, so that $\mathbf{k}=-\mathbf{Q}_{T}$
- Factorized cross section at fixed Q_{T} :

$$
\begin{aligned}
& \frac{d \sigma_{N N \rightarrow \mu^{+} \mu^{-}+X}\left(Q, p_{1}, p_{2}\right)}{d Q^{2} d^{2} \mathbf{Q}_{T}}=\int_{\xi_{1}, \xi_{2}} \sum_{a=q \bar{q}} \frac{d \hat{\sigma}_{a \bar{a} \rightarrow \mu^{+} \mu^{-}(Q)+X}\left(Q, \mu, \xi_{1} p_{1}, \xi_{2} p_{2}, \mathbf{Q}_{T}\right)}{d Q^{2} d^{2} \mathbf{Q}_{T}} \\
& \times f_{a / N}\left(\xi_{1}, \mu\right) f_{\bar{a} / N}\left(\xi_{2}, \mu\right)
\end{aligned}
$$

- Recall: μ is the factorization scale that separates IR (f) from UV ($d \hat{\sigma}$) in quantum corrections.
- μ appears in $\hat{\sigma}$ through $\alpha_{s}(\mu)$ and $\ln (\mu / Q)$ so choosing $\mu \sim Q$ can improve perturbative predictions.
- Evolution: $\mu d f(x, \mu) / d \mu=\int_{x}^{1} P(x / \xi) f(\xi, \mu)$ makes energy extrapolations possible.
- The diagrams at order α_{s} Gluon emission contributes at $Q_{T} \neq 0$

Virtual corrections contribute only at $Q_{T}=0$

- The result is finite for $\mathbf{Q}_{T} \neq 0 \ldots$

$$
\begin{aligned}
\frac{d \hat{\sigma}_{q \bar{q} \rightarrow \gamma^{*} g}^{(1)}}{d Q^{2} d^{2} \mathbf{Q}_{T}}= & \sigma_{0} \frac{\alpha_{s} C_{F}}{\pi^{2}}\left(1-\frac{4 \mathbf{Q}_{T}^{2}}{(1-z)^{2} \xi_{1} \xi_{2} S}\right)^{-1 / 2} \\
& \times\left[\frac{1}{\mathbf{Q}_{T}^{2}} \frac{1+z^{2}}{1-z}-\frac{2 z}{(1-z) Q^{2}}\right]
\end{aligned}
$$

as long as $\mathbf{Q}_{T} \neq 0, z=Q^{2} / \xi_{1} \xi_{2} S \neq 1$.
Q_{T} integral $\rightarrow \frac{\ln (1-z)}{1-z} ; z$ integral $\rightarrow \frac{\ln \mathbf{Q}_{T}^{2}}{\mathbf{Q}_{T}^{2}}$.
Both singularities cancel in the inclusive cross section. Both inspire resummation of higher order corrections.

The leading singularity in \mathbf{Q}_{T}

- As we'll see later: $1-z \sim 2 k_{0} / Q \geq 2\left|\mathbf{k}_{T}\right| / Q$
- z integral: If Q^{2} / S not too big, PDFs nearly constant:

$$
\frac{1}{\mathbf{Q}_{T}^{2}} \int_{1-Q^{2} / S}^{1-\mathbf{Q}_{T}^{2} / Q^{2}} \frac{d z}{1-z}=\frac{1}{\mathbf{Q}_{T}^{2}} \ln \left[\frac{Q^{2}}{\mathbf{Q}_{T}^{2}}\right]
$$

\Rightarrow Prediction for Q_{T} dependence:

$$
\begin{aligned}
& \frac{d \sigma_{N N \rightarrow \mu^{+} \mu^{-}+X}\left(Q, \mathbf{Q}_{T}\right)}{d Q^{2} d^{2} \mathbf{Q}_{T}}=\frac{\alpha_{s} C_{F}}{\pi} \frac{1}{\mathbf{Q}_{T}^{2}} \ln \left[\frac{Q^{2}}{\mathbf{Q}_{T}^{2}}\right] \\
& \quad \times \sum_{a=q \bar{q}} \int_{\xi_{1} \xi_{2}} \frac{\hat{\sigma}_{a \bar{a} \rightarrow \mu^{+} \mu^{-}(Q)+X}(Q, \mu)}{d Q^{2}} f_{a / N}\left(\xi_{1}, \mu\right) f_{\bar{a} / N}\left(\xi_{2}, \mu\right)
\end{aligned}
$$

- Compare to: $\mathbf{Z} p_{T}$ from Tevatron Run I

(from Kulesza, G.S., Vogelsang (2002))
- $\ln Q_{T} / Q_{T}$ works pretty well for large Q_{T}
- At smaller Q_{T} reach a maximum, then a decrease near "exclusive" limit (parton model kinematics)
- Most events are at "low" $Q_{T} \ll Q=m_{Z}$.

Getting to $Q_{T} \ll Q$: Transverse momentum resummation
(Logs of Q_{T})/ Q_{T} to all orders

How? Variant factorization and separation of variables
q and \bar{q} "arrive" at point of annihilation with transverse momentum of radiated gluons in initial state.
q and \bar{q} radiate independently (fields don't overlap!).
Final-state QCD radiation too late to affect cross section

$$
\frac{d \sigma_{N N \rightarrow \mu^{+} \mu^{-}+X}\left(Q, \mathbf{Q}_{T}\right)}{d Q^{2} d^{2} \mathbf{Q}_{T}}
$$

Summarized by: Q_{T}-factorization:

$$
\begin{gathered}
\frac{d \sigma_{N N \rightarrow Q X}}{d Q d^{2} Q_{T}} \quad H \times \mathcal{P}_{a / N}\left(\xi_{1}, p_{1} \cdot n, k_{1 T}\right) \mathcal{P}_{\bar{a} / N}\left(\xi_{2}, p_{2} \cdot n, k_{2 T}\right) \\
\otimes_{\xi_{i}, k_{i T}} U_{a \bar{a}}\left(k_{s T}, n\right)
\end{gathered}
$$

We will solve for the k_{T} dependence of the \mathcal{P} 's.

New factorization variables: n^{μ} apportions gluons k :

$$
\begin{aligned}
& p_{i} \cdot k<n \cdot k \Rightarrow k \in \mathcal{P}_{i} \\
& p_{a} \cdot k, p_{\bar{a}} \cdot k>n \cdot k \Rightarrow k \in U
\end{aligned}
$$

Convolution in $k_{i, T} \mathbf{s} \Rightarrow$ Fourier $\mathrm{e}^{i \vec{Q}_{T} \cdot \vec{b}}$

The factorized cross section in "impact parameter space":

$$
\begin{aligned}
& \frac{d \sigma_{N N \rightarrow Q X}(Q, b)}{d Q}=\int d \xi_{1} d \xi_{2} \\
& \quad \times H\left(\xi_{1} p_{1}, \xi_{2} p_{2}, Q, n\right)_{a \bar{a} \rightarrow Q+X} \\
& \quad \times \mathcal{P}_{a / N}\left(\xi_{1}, p_{1} \cdot n, b\right) \mathcal{P}_{\bar{a} / N}\left(\xi_{2}, p_{2} \cdot n, b\right) U_{a \bar{a}}(b, n)
\end{aligned}
$$

Now we can resum by separating variables!
the LHS independent of $\mu_{\text {ren }}, n \Rightarrow$ two equations

$$
\mu_{\mathrm{ren}} \frac{d \sigma}{d \mu_{\mathrm{ren}}}=0 \quad n^{\alpha} \frac{d \sigma}{d n^{\alpha}}=0
$$

Solve and transform back to Q_{T} : all the (Logs of Q_{T}) / Q_{T} :

$$
\begin{aligned}
\frac{d \sigma_{N N \mathrm{res}}}{d Q^{2} d^{2} \vec{Q}_{T}} & =\sum_{a} H_{a \bar{a}}\left(\alpha_{s}\left(Q^{2}\right)\right) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i \vec{Q}_{T} \cdot \vec{b}} \exp \left[E_{a \bar{a}}^{\mathrm{PT}}(b, Q, \mu)\right] \\
& \times \sum_{a=q \bar{q}} \int_{\xi_{1} \xi_{2}} \frac{d \hat{\sigma}_{a \bar{a} \rightarrow \mu^{+}+\mu^{-}(Q)+X}(Q, \mu)}{d Q^{2}} f_{a / N}\left(\xi_{1}, 1 / b\right) f_{\bar{a} / N}\left(\xi_{2}, 1 / b\right)
\end{aligned}
$$

"Sudakov" exponent suppresses large $b \leftrightarrow$ small Q_{T} :

$$
E_{a \bar{a}}^{\mathrm{PT}}=-\int_{1 / b^{2}}^{Q^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}}\left[2 A_{q}\left(\alpha_{s}\left(k_{T}\right)\right) \ln \left(\frac{Q^{2}}{k_{T}^{2}}\right)+2 B_{q}\left(\alpha_{s}\left(k_{T}\right)\right)\right]
$$

With $B=2(K+G)_{\mu=p \cdot n}$, and lower limit: $1 / b$ (NLL)

* Comments:

The functions $A_{i}\left(\alpha_{s}\right)$ and $B_{i}\left(\alpha_{s}\right)$ are anomalous dimensions.

And can be calculated by comparison to low orders.

In particular, $A_{i}\left(\alpha_{s}\right)$ is the numerator of the $1 /(1-x)$ term in splitting function $P_{i i}(x)$
because it's the infrared divergent $(x \rightarrow 1)$ coefficient of the collinear $b \rightarrow \infty$ singularity.
$* A_{q}\left(\alpha_{s}\right)=\frac{\alpha_{s}}{\pi} C_{q}\left(1+\frac{\alpha_{s}}{\pi} K+\ldots\right), K=C_{A}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5 n_{F}}{9}$

* Evaluating a resummed cross sections: re-enter NPQCD.

We start with:

$$
E^{\mathrm{PT}}=-\int_{1 / b^{2}}^{Q^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}}\left[2 A_{q}\left(\alpha_{s}\left(k_{T}\right)\right) \ln \left(\frac{Q^{2}}{k_{T}^{2}}\right)+B_{q}\left(\alpha_{s}\left(k_{T}\right)\right)\right]
$$

With running coupling:

$$
\alpha_{s}\left(k_{T}\right)=\frac{\alpha_{s}(Q)}{1+\frac{\alpha_{s}(Q)}{4 \pi} \beta_{0} \ln \left(\frac{k_{T}^{2}}{Q^{2}}\right)}=\frac{4 \pi}{\beta_{0} \ln \left(\frac{k_{T}^{2}}{\Lambda_{\mathrm{QCD}}^{2}}\right)}
$$

Singularity in integral at $b^{2}=Q^{2} \exp \left[-4 \pi / \beta_{0} \alpha_{s}(Q)\right] \sim \frac{1}{\Lambda^{2}}$.

* Problem: how to do the inverse transform with the running coupling when $k_{T}^{\min } \sim 1 / b$ gets small?
* At least four approaches:

1) Work in Q_{T}-space directly to some approximation The originals: Dokshitzer, Diakanov \& Troyan Revived by Ellis \& Veseli Kulesza \& Stirling who re-derived it from b-space.
2) Insert a "soft landing" on the k_{T} integral by replacing

$$
1 / b \rightarrow \sqrt{1 / b^{2}+1 / b_{*}^{2}}
$$

for some fixed b_{*}. (CS, CSS " b_{*} " prescription, ResBos)
3) Extrapolation of E^{PT} into NP region (J.W. Qiu, X.F. Zhar
4) Minimal: avoid the singularity at $1 / b=\Lambda_{\mathrm{QCD}}$ by monkeying with the b-space contour integral.
(This technique introduced in threshold resummation; then adapted by Laenen, GS and Vogelsang, and Bozzi, Catani, de Florian and Grazzini.)

Any of these "define" PT. All will fit the data qualitatively, and with a little work quantitatively.

But all require new parameters for quantitative fit. This is not all bad . . . let's see why.

$$
\begin{aligned}
E^{\mathrm{soft}} & =\frac{1}{2 \pi} \int_{0}^{\mu_{I}^{2}} \frac{d^{2} k_{T}}{k_{T}^{2}} A_{q}\left(\alpha_{s}\left(k_{T}\right)\right) \ln \left(\frac{Q^{2}}{k_{T}^{2}}\right)\left(e^{i \mathbf{b} \cdot \mathbf{k}_{T}}-1\right) \\
& \sim-\int_{0}^{\mu_{I}^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}}\left(\mathbf{b} \cdot \mathbf{k}_{T}\right)^{2} A_{q}\left(\alpha_{s}\left(k_{T}\right)\right) \ln \left(\frac{Q^{2}}{k_{T}^{2}}\right)+\cdots \\
& \sim-b^{2} \int d k_{T}^{2} A_{q}\left(\alpha_{s}\left(k_{T}\right)\right) \ln \left(\frac{Q^{2}}{k_{T}^{2}}\right)
\end{aligned}
$$

$\theta\left(k_{T}-1 / b\right) \Rightarrow\left(e^{i \mathbf{b} \cdot \mathbf{k}_{T}}-1\right)$; in fact, correct to all orders,

Note the expansion is for b " small enough" only.

What is $\quad-b^{2} \int d k_{T}^{2} A_{q}\left(\alpha_{s}\left(k_{T}\right)\right) \ln \left(\frac{Q^{2}}{k_{T}^{2}}\right)$?
Don't really know, but it suggests IR gluons organize to a simple form \& give a nonperturbative correction like (exhibiting the μ_{I} is unconventional) Perturbative strong coupling is a mirage?

$$
E^{\mathrm{NP}}=-b^{2} \mu_{I}^{2}\left(g_{1} \ln \left(\frac{Q}{\mu_{I}}\right)+g_{2}\right)
$$

Since this is an exponent, whatever the definition of the pertrubative resummed cross section, it is smeared with a Gaussian whose width in $b\left(k_{T}\right)$ space decreases (increases) with $\ln Q$.

In summary

$$
\begin{aligned}
\frac{d \sigma\left(Q_{T}\right)}{d Q^{2} d^{2} \vec{Q}_{T}} & =\sum_{a} H_{a \bar{a}}\left(\alpha_{s}\left(Q^{2}\right)\right) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i \vec{Q}_{T} \cdot \vec{b}} e^{E_{a \bar{a}}^{\mathrm{PT}}(b, Q, \mu)} e^{-\mu_{I}^{2} b^{2}\left(g_{1} \ln \left(\frac{Q}{\mu_{I}}\right)+g_{2}\right)} \\
& \times \sum_{a=q \bar{q}} \int_{\xi_{1} \xi_{2}} \frac{d \hat{\sigma}_{a \bar{a} \rightarrow \mu^{+} \mu^{-}(Q)+X}(Q, \mu)}{d Q^{2}} f_{a / N}\left(\xi_{1}, 1 / b\right) f_{\bar{a} / N}\left(\xi_{2}, 1 / b\right) \\
& =\pi \int d^{2} \mathbf{k}_{T} \frac{e^{-k_{T}^{2} / 4\left[\mu_{I}^{2}\left(g_{2} \ln \left(Q / k_{T}\right)+g_{2}\right)\right]}}{\mu_{I}^{2}\left(g_{2} \ln \left(Q / k_{T}\right)+g_{2}\right)} \frac{d \sigma_{N N}\left(\mathbf{Q}_{\mathbf{T}}-\mathbf{k}_{\mathbf{T}}\right)}{d Q^{2} d^{2} \vec{Q}_{T}}
\end{aligned}
$$

Which gives curves like the one we saw before.

Successful phenomenology for W and Z. In principle, can also fit to fixed-target Drell-Yan with the same set of NP parameters.

Qiu and Zhang show that NP corrections are dominant for fixed-target Q^{2}.

Next - what about those $1 /(1-z)$ (soft gluon energy) singularities?

* Continue with threshold resummation . . .

IV. Threshold resummation

- Back to the one-loop DY hard-scattering

$$
\begin{aligned}
\frac{d \hat{\sigma}_{q \bar{q} \rightarrow \gamma^{*} g}^{(1)}}{d Q^{2} d^{2} \mathbf{Q}_{T}}= & \sigma_{0} \frac{\alpha_{s} C_{F}}{\pi^{2}}\left(1-\frac{4 \mathbf{Q}_{T}^{2}}{(1-z)^{2} \xi_{1} \xi_{2} S}\right)^{-1 / 2} \\
& \times\left[\frac{1}{\mathbf{Q}_{T}^{2}} \frac{1+z^{2}}{1-z}-\frac{2 z}{(1-z) Q^{2}}\right]
\end{aligned}
$$

- Factorized cross section at fixed Q_{T} :

$$
\begin{aligned}
\frac{d \sigma_{N N \rightarrow \mu^{+} \mu^{-}+X}\left(Q, p_{1}, p_{2}\right)}{d Q^{2} d^{2} \mathbf{Q}_{T}}=\int_{\xi_{1}, \xi_{2}} \sum_{a=q \bar{q}} \frac{d \hat{\sigma}_{a \bar{a} \rightarrow \mu^{+} \mu^{-}(Q)+X}\left(Q, \mu, \xi_{1} p_{1}, \xi_{2} p_{2}, \mathbf{Q}_{T}\right)}{d Q^{2} d^{2} \mathbf{Q}_{T}} \\
\times f_{a / N}\left(\xi_{1}, \mu\right) f_{\bar{a} / N}\left(\xi_{2}, \mu\right)
\end{aligned}
$$

$z \rightarrow 1$ is called "partonic threshold".

- Threshold resummation is resummation for the plus distributions.
- Same method as for Q_{T}, but now fix $k_{0}^{\text {soft }} \sim \frac{1}{2}(1-z) Q$. Laplace or Mellin transform $e^{-N 2 k_{0} / Q} \sim z^{N}$ and $\overline{\mathrm{MS}}$ collinear subtraction gives (here NLL accuracy shown) $\exp \left[E_{a}^{\mathrm{thr}}(N, Q)\right]:$

$$
E_{a}^{\mathrm{thr}}(N, Q)=\int_{Q^{2} / N^{2}}^{Q^{2}} \frac{d u^{2}}{u^{2}} 2 A_{a}\left(\alpha_{s}(u)\right) \ln \frac{N u}{Q}
$$

- Inverse transform to the cross section:

$$
\begin{aligned}
\frac{d \sigma_{N N}^{\mathrm{res}}}{d Q^{2}}=\sum_{a} \hat{\sigma}_{a}^{(0)}(Q, \mu) & \int_{C_{N}} \frac{d N}{2 \pi i}\left(\frac{Q^{2}}{S}\right)^{-N} \exp \left[E_{a}^{\mathrm{thr}}(N, Q, \mu)\right] \\
& \times f_{a / N}(N, \mu) f_{\bar{a} / N}(N, \mu)
\end{aligned}
$$

Formalism is similar for W, Z, H. "Electroweak annihilation"

Typical collider result . . .

- Logs: threshold resummation vs. fixed order for H at LHC

(from Catani, de Florian, Grazzini, Nason (2003))
- Modest change \& decrease in μ-dependence \rightarrow increased confidence. But see V.)

IV. Resummation with Color Exchange

- Resummed amplitudes in dimensional regularization
(Catani (1998) Tejeda-Yeomans \& GS (2002) Kosower (2003)) Aybat, Dixon \& GS (2006)
- Amplitude for partonic process

$$
\begin{aligned}
& \mathrm{f}: \quad f_{A}\left(p_{A}, r_{A}\right)+f_{B}\left(p_{B}, r_{B}\right) \rightarrow f_{1}\left(p_{1}, r_{1}\right)+f_{2}\left(p_{2}, r_{2}\right) \\
& \mathcal{M}_{\left\{r_{i}\right\}}^{[\mathrm{f}]}\left(p_{j}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\mathcal{M}_{L}^{[\mathrm{f}]}\left(p_{j}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\left(c_{L}\right)_{\left\{r_{i}\right\}}
\end{aligned}
$$

- Need to control poles in ϵ for factorized calculations at fixed order and for resummation

Example of $\left(c_{L}\right)_{\left\{r_{i}\right\}}$:
$c_{1} \equiv<_{2}^{3}$

- Jet/soft factorization (Sen (1983)):

$$
\begin{aligned}
& \mathcal{M}_{L}^{[\mathrm{f}]}\left(p_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\prod_{i=A, B, 1,2} J_{i}^{[\mathrm{virt}]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \\
& \quad \times \mathbf{S}_{L I}^{[\mathrm{f}]}\left(p_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) h_{I}^{[\mathrm{f}]}\left(\wp_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)
\end{aligned}
$$

- Soft function labelled by color exchange (singlet, octet . . .)
- Factors require dimensional regularization
- Same factorization \rightarrow resummation
- Poles at 2- and higher loops .. .
- Relation to supersymmetric Yang-Mills theories Bern, Dixon, Kosower \& Smirnov (2004) verified structure to 3 loops
- Dimensionally-regularized jets (Magnea \& GS (1990))

$$
\begin{aligned}
J_{i}\left(\frac{Q^{2}}{\mu^{2}},\right. & \left.\alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{\frac { 1 } { 4 } \int _ { 0 } ^ { - Q ^ { 2 } } \frac { d \xi ^ { 2 } } { \xi ^ { 2 } } \left[\mathcal{K}^{[i]}\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right.\right. \\
& +\mathcal{G}^{[i]}\left(-1, \overline{\alpha_{s}}\left(\frac{\mu^{2}}{\xi^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon,\right) \epsilon\right) \\
& \left.\left.+\frac{1}{2} \int_{\xi^{2}}^{\mu^{2}} \frac{d \tilde{\mu}^{2}}{\tilde{\mu}^{2}} \gamma_{K}^{[i]}\left(\overline{\alpha_{s}}\left(\frac{\mu^{2}}{\tilde{\mu}^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right)\right]\right\}
\end{aligned}
$$

- γ_{K}, \mathcal{K} related to A above, $\mathcal{G}+\mathcal{K}$ to B
- Dimensionally-regularized S

$$
\begin{aligned}
& \mathbf{S}^{[\mathrm{f}]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \\
& \quad=\mathrm{P} \exp \left[-\frac{1}{2} \int_{0}^{-Q^{2}} \frac{d \tilde{\mu}^{2}}{\tilde{\mu}^{2}} \boldsymbol{\Gamma}^{[\mathrm{f}]}\left(\overline{\alpha_{s}}\left(\frac{\mu^{2}}{\tilde{\mu}^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right)\right]
\end{aligned}
$$

$\Gamma^{[f]}$: anomalous dimension; color mixing

- Color Mixing (Date (1983) Sen (1983) . .

Kidonakis \& GS (1996) Bonciani et al. $(1998,2003)$ Dokshitzer \& Marchesini (2005)
Aybat, Dixon, GS (2006))

- Cross sections \& amplitudes: NLL exponentiation in basis that diagonalizes Γ

$$
\exp \int \frac{d m}{m}\left[\lambda^{(\mathrm{f})}\left(\alpha_{s}(m)\right)\right]
$$

- [f] color exchange basis, $\lambda \mathrm{s}$: eigenvalues of Γ_{S}
- Example: f: $g+g \rightarrow g+g$

$$
\begin{aligned}
& \operatorname{Tr}\left[T_{a_{1}} T_{a_{2}} T_{a_{3}} T_{a_{4}}\right] \text { and } 5 \text { perms } \\
& \quad\left[T_{a_{1}} T_{a_{2}}\right] \operatorname{Tr}\left[T_{a_{3}} T_{a_{4}}\right] \text { and } 2 \text { perms }
\end{aligned}
$$

- Color mixing governed by a 9×9 matrix
$-g+g \rightarrow g+g$
(Kidonakis, Oderda, GS (1998), Bern, Dixon, Kosower (2000) Anastasiou, Glover, Oleari, Tejeda-Yeomans (2

$$
\Gamma_{S^{\prime}}^{(1)}=C_{A}\left(\begin{array}{ccccccccc}
T & 0 & 0 & 0 & 0 & 0 & -\frac{U}{N_{c}} & \frac{T-U}{N_{c}} & 0 \\
0 & U & 0 & 0 & 0 & 0 & 0 & \frac{U-T}{N_{C}} & -\frac{T}{N_{c}} \\
0 & 0 & T & 0 & 0 & 0 & -\frac{U}{N_{c}} & \frac{T-U}{N_{e}} & 0 \\
0 & 0 & 0 & (T+U) & 0 & 0 & \frac{U}{N_{c}} & 0 & \frac{T}{N_{c}} \\
0 & 0 & 0 & 0 & U & 0 & 0 & \frac{U-T}{N_{c}} & -\frac{T}{N_{c}} \\
0 & 0 & 0 & 0 & 0 & (T+U) & \frac{U}{N_{c}} & 0 & \frac{T}{N_{c}} \\
\frac{T-U}{N_{C}} & 0 & \frac{T-U}{N_{C}} & \frac{T}{N_{c}} & 0 & \frac{T}{N_{c}} & 2 T & 0 & 0 \\
-\frac{U}{N_{c}} & -\frac{T}{N_{c}} & -\frac{U}{N_{c}} & 0 & -\frac{T}{N_{c}} & 0 & 0 & 0 & 0 \\
0 & \frac{U-T}{N_{c}} & 0 & \frac{U}{N_{c}} & \frac{U-T}{N_{c}} & \frac{U}{N_{c}} & 0 & 0 & 2 U
\end{array}\right)
$$

- New result for all massless $2 \rightarrow n$ processes (Aybat, Dixon, gs (2006))

$$
\Gamma_{S}=\frac{\alpha_{s}}{\pi}\left(1+\frac{\alpha_{s}}{\pi} K\right) \Gamma_{S^{\prime}}^{(1)}+\cdots
$$

$\Gamma^{(2)}=(K / 2) \Gamma^{(1)}$ with same K as in the DGLAP splitting.

Related to the "CMW" or bremsstrahlung scheme.
(Catani, Marchesini \& Webber (1990))

To NNLO, "single-web" exchange generalizes single gluon.
(C.F. Berger, 2002)

Another indication of simplification for IR gluons.

V. Generalizations and limitations A) Factorization with no hard scattering: BFKL

(Sen (1980) Balitsky (1996) Kúcs (2003) . . . related to saturation, colored glass condensate)

- Regge limit in PT for elastic scattering: $p_{A}+p_{B} \rightarrow p_{A}^{\prime}+p_{B}^{\prime}$

$$
\begin{aligned}
& M(t, s): \quad-\left(p_{A}^{\prime}-p_{B}^{\prime}\right)^{2}-t \ll s=\left(P_{A}+p_{B}\right)^{2} \\
& M(t, s)=\sum_{m, \ell} \int\left(\prod_{i=1}^{m-1} \mathrm{~d}^{D-2} k_{i \perp}\right)\left(\prod_{j=1}^{\ell-1} \mathrm{~d}^{D-2} p_{j \perp}\right) \\
& \quad \times \Gamma_{A}^{(m) a_{1} \ldots a_{m}}\left(p_{A}, q, n, k_{1 \perp}, \ldots, k_{m \perp}\right) \\
& \quad \times S_{a_{1}^{\prime} \ldots, a_{n}, b_{1} \ldots b_{e l l}}^{(n, 2}\left(q ; n ; k_{1 \perp}, \ldots, k_{n \perp} ; p_{1 \perp}, \ldots, p_{m \perp}\right) \\
& \quad \times \Gamma_{B}^{(\ell) b_{1} \ldots b_{m}}\left(p_{B}, q, n ; p_{1 \perp}, \ldots, p_{\ell \perp}\right)
\end{aligned}
$$

- Factorization at fixed rapidity separation:

Jets, $\Gamma_{A, B}$ \& soft, S; no H. Introduce vector n^{μ} as above.

- Evolution equations (in $\ln s \sim$ rapidity $\sim \ln (1 / x)$) give
- generically m convolutions at $N^{m} L L$

$$
\begin{aligned}
& \left(p_{A} \cdot n \frac{\partial}{\partial p_{A} \cdot n}-1\right) \Gamma_{A}^{(\ell) a_{1} \ldots a_{\ell}}\left(p_{A}, q, n ; k_{1 \perp}, \ldots, k_{\ell \perp}\right)= \\
& \quad \sum_{m} \int \prod_{j=1}^{m} \mathrm{~d}^{D-2} l_{j \perp} \mathcal{K}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{m}}^{(\ell, m)}\left(k_{1 \perp}, l_{1 \perp}, \ldots ; q, n\right) \\
& \quad \times \Gamma_{B}^{(m) b_{1} \ldots b_{m}}\left(p_{A}, q, n ; l_{1 \perp} \ldots\right)
\end{aligned}
$$

- Can project onto different color exchange: octet, $m=0 \mathrm{LL}$ reggeized gluon singlet, $m=1$, BFKL LL pomeron ordered in rapidity, not $k_{T} \ldots$

B) Non-global logs: color and energy flow

(Dasgupta \& Salam (2001) . . .)

- Simplest cases: 2 jets. Measure distribution $\Sigma_{\Omega}(E)$
- Very interesting case: energy flow between jets in $W W$ fusion to H.
- Choices for Cross Section:
- a) Inclusive in $\bar{\Omega} \rightarrow$ Number of jets not fixed!
- b) Correlation with event shape $\tau_{a} \ldots$: fixes number of jets \rightarrow factorization (Berger, Kúcs, GS (2003), Dokshitzer, Marchesini (2003), Banfi, Salam, Zanderighi $(2004,5)$)
- Contrast: for number of jets not fixed: nonlinear evolution! The approximate evolution equation for Σ : (Banfi, Marchesini, Smye (2002)) LL in E / Q, large- N_{c}) Define: $\partial_{\Delta} \equiv E(\partial / \partial E)$

$$
\partial_{\Delta} \Sigma_{a b}(E)=-\partial_{\Delta} R_{a b} \Sigma_{a b}(E)+\int_{k \text { not in } \Omega} d N_{a b \rightarrow k}\left(\Sigma_{a k} \Sigma_{k b}-\Sigma_{a b}\right)
$$

$$
\begin{array}{r}
d N_{a b \rightarrow k} \equiv \frac{d \Omega_{k}}{4 \pi} \frac{\beta_{a} \cdot \beta_{b}}{\beta_{k} \cdot \beta_{b} \beta_{k} \cdot \beta_{a}} \quad \text { ("dipole source") } \\
R_{a b} \equiv \int_{E}^{Q} \frac{d E^{\prime}}{E^{\prime}} \int_{\Omega} d N_{a b \rightarrow k}, \quad \text { (suppression due to } \\
\text { uncancelled virtual gluons) }
\end{array}
$$

- Origin of the nonlinearity
* ∂_{E} can come from unobserved "hard" gluon $G(k)$.
* New hard gluon $G(k)$ acts as new, recoil-less source.
* Large- N_{c} limit: $\bar{q}(a) G(k) q(b)$ sources $\rightarrow \bar{q}(a) q(k) \oplus \bar{q}(k) q(a)$.
* "Global" event shapes don't allow an extra hard gluon. (observed everywhere), but fixing an event shape may limit the number of events.
* We are far from a full understanding.

Forshaw, Kyrieleis, Seymour, 2006: "superleading" logs
C) Large threshold effects in observed hadrons

- Pions at fixed target and RHIC (Vogelsang and de Florian, 2004)

$$
\begin{aligned}
& \frac{p_{T}^{3} d \sigma\left(x_{T}\right)}{d p_{T}}= \sum_{a, b, c} \\
& \times \int_{0}^{1} d x_{1} f_{a / H_{1}}\left(x_{1}, \mu_{F}^{2}\right) \int_{0}^{1} d x_{2} f_{b / H_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \int_{0}^{1} d z z^{2} D_{h / c}\left(z, \mu_{F}^{2}\right) \\
& \times \int_{0}^{1} d \hat{x}_{T} \delta\left(\hat{x}_{T}-\frac{x_{T}}{z \sqrt{x_{1} x_{2}}}\right) \int_{\hat{\eta}_{-}}^{\hat{\eta}_{+}} d \hat{\eta} \frac{\hat{x}_{T}^{4} \hat{s}}{2} \frac{d \hat{\sigma}_{a b \rightarrow c X}\left(\hat{x}_{T}^{2}, \hat{\eta}\right)}{d \hat{x}_{T}^{2} d \hat{\eta}}
\end{aligned}
$$

$\hat{\eta}$: pseudorapidity at parton level

$$
\hat{\eta}_{+}=-\hat{\eta}_{-}=\ln \left[\left(1+\sqrt{1-\hat{x}_{T}^{2}}\right) / \hat{x}_{T}\right]
$$

- Averages for distribution x and fragmentation z 's

RHIC 200 GeV midrapidity average z for pions, and average x for pions, photons, jets at (NLO). Thanks to Werner Vogelsang.

- Large z enhances threshold singularities.
- Singularities at one loop:

$$
\begin{gathered}
\frac{\hat{s} d \hat{\sigma}_{a b \rightarrow c X}^{(1)}(v, w)}{d v d w} \approx \frac{\hat{s} d \hat{\tilde{\sigma}}_{a b \rightarrow c d}^{(0)}(v)}{d v}\left[A^{\prime} \delta(1-w)+B^{\prime}\left(\frac{\ln (1-w)}{1-w}\right)_{+}\right. \\
\left.+C^{\prime}\left(\frac{1}{1-w}\right)_{+}\right]
\end{gathered}
$$

- For resummation, take $x_{T}^{2 N}$ moments \rightarrow factorization:

$$
\hat{\sigma}_{a b \rightarrow c d}^{(\mathrm{res})}(N)=C_{a b \rightarrow c d} \Delta_{N}^{a} \Delta_{N}^{b} \Delta_{N}^{c} J_{N}^{d}\left[\sum_{I} G_{a b \rightarrow c d}^{I} \Delta_{I N}^{(\mathrm{int}) a b \rightarrow c d}\right] \hat{\sigma}_{a b \rightarrow c d}^{(\mathrm{Born})}(N)
$$

- A typical NLL resummed factor:

$$
\begin{gathered}
\Delta_{N}^{a}=\exp \left[\int_{0}^{1} \frac{z^{N-1}-1}{1-z} \int_{\mu_{F I}^{2}}^{(1-z)^{2} Q^{2}} \frac{d q^{2}}{q^{2}} A_{a}\left(\alpha_{s}\left(q^{2}\right)\right)\right] \\
A=C_{F}\left(\alpha_{s} / \pi\right)\left(1+K\left(\alpha_{s} / \pi\right)\right)+\ldots
\end{gathered}
$$

- Invert the moments: resolve a long-standing fixed-target vs. collider puzzle.

- Left: expansion of resummed cross section to fixed orders.
- Right: exact NLO vs. NLO expansion.
- Shows in $\pi^{0} 1 \mathrm{PI}$ cross sections threshold resummation is more accurate and more important in fixed target range.

Conclusions/Summary

- Resummation is absolutely necessary for many distributions (Q_{T}, event shape) just one step away from inclusive cross sections, because most events are found in regions with ordered scales $\left(Q_{T} \ll Q, m_{\text {jet }} \ll E_{\text {jet }}\right)$.
- It induces the form of certain NP effects.
- Resummations reflect quantum incoherence.
- Resummation with color exchange displays surprising simplicity, at least at NNLL/pole. (Hint of duality?)
- The soft limit of multigluon exchange may be simpler than suggested by the growing perturbative coupling.
- Many puzzles remain, especially connected to energy flow for non-global cross sections.

