

Results on Photon Production in Au+Au Collisions at RHIC

Quark Matter 2002, Nantes

Klaus Reygers
University of Münster
for the PHENIX collaboration

Direct Photons in Heavy Ion Reactions

- Prompt photons
 - Produced in initial hard scatterings, before a possible QGP has formed
 - Help to constrain models
 - Intrinsic k_{τ}
 - Gluon structure function
- Thermal Photons
 - Produced in all stages of the reaction (possible QGP, hadron gas)
 - Strongest contribution from hottest phase
 - Measurement constrains
 - Initial temperature
 - · Degrees of freedom

- Measurement of direct photons notoriously difficult
- But: PHENIX offers the possibility to measure photons with different methods
 - e.m. calorimeters (focus of this talk)
 - Photon conversion method

PHENIX Electromagnetic Calorimeter

See Christian Klein-Bösing's poster for further details

PbSc

- Highly segmented lead scintillator sampling Calorimeter
- Module size: 5.5 cm x 5.5 cm x 37 cm

PbGI

- Highly segmented lead glass
 Cherenkov Calorimeter
- Module size: 4 cm x 4 cm x 40 cm

Differences

- Different response to hadrons
- Different corrections to get linear energy response
- Different shower overlap corrections
- \Rightarrow Measurement of the same quantities (photons, π^0 's) with different systematics

Direct Photon Search

- Measure inclusive photon
 ρ_τ -spectrum
 (hadron decay γ + direct γ)
 - Identify photon-like showers based on
 - · Shower shape
 - · Time of flight
 - Correct for remaining background of
 - Charged hits
 - Neutron and anti-neutron hits
 - Non-vertex particles
 - Apply photon reconstruction efficiency correction
- Measure $\pi^0 p_{\tau}$ -spectrum

- Use fit to π^0 p_{τ} -spectrum as input for decay photon simulation
- Compare measured photons with expected photons from hadron decays

$$R_{\gamma} := rac{N_{\gamma}^{incl}/N_{\pi^0}^{meas}}{N_{\gamma}^{decay,sim}/N_{\pi^0}^{fit}}$$

See poster by Justin Frantz for an alternative method to search for direct photons

Charged Particle Background

Result after photon identification cuts (time-of-flight and shower shape cut)

- X_{ch}: ratio of charged to all EmCal hits
- Identified tracks used to veto charged EmCal hits
- random vetos corrected by event mixing
- Charged background < 10% above p_T ≈ 1.5 GeV

Background from Neutrons and Anti-Neutrons

PbGI hadron response hard to parameterize: time consuming simulation with full tracking of Cherenkov photons necessary

- Can only be determined from simulation
- Input n and \overline{n} spectrum estimated based on measured p and \overline{p} spectrum
- Neutron, anti-neutron background to all neutral EmCal hits < 6%

Inclusive Photon Spectra for Different Centralities at $\sqrt{s_{NN}}$ = 200 GeV

Error bars reflect only statistical errors

Background Photon Simulation

- Input: Parameterization of measured π^0 -spectrum
- Assume m_{τ} -scaling for η and other hadrons with photon decay branches
- η-spectrum not (yet)
 measured,taking η/π⁰literature value:

$$(dN_n/dm_T)/(dN_{\pi^0}/dm_T) = 0.55$$

Measured and Simulated γ/π⁰ ratio: Peripheral Events

Warning: Error bars reflect only statistical errors

Measured and Simulated γ/π⁰ ratio: Central Events

Warning: Error bars reflect only statistical errors

⇒ Thorough evaluation of systematic errors is of paramount importance for direct photon search ...

Current Estimate of Systematic Errors

	pT = 1 GeV	pT= 3 GeV
photon yield: charged particle background	2,7%	4,1%
photon yield: gamma conversion	2,1%	2,1%
photon yield: neutron background	3,5%	4,3%
photon yield: efficiency	14,0%	15,0%
Neutral pion yield: gamma conversion	2,1%	2,1%
Neutral pion yield: yield extraction sys. error	10,0%	10,0%
Neutral pion yield: efficiency	16,0%	18,0%
non-vertex background	2,8%	2,8%
energy scale calibration	3,0%	6,0%
acceptance	1,0%	1,0%
eta/pi0 ratio, mT-scaling	4,0%	4,0%
other radiative decays	1,0%	1,0%
Neutral pion spectrum fit	5,0%	5,0%
quadratic sum	25,3%	27,9%

Systematic error is quoted for

$$R_{\gamma} := \frac{N_{\gamma}^{incl}/N_{\pi^0}^{meas}}{N_{\gamma}^{decay,sim}/N_{\pi^0}^{fit}}$$

γ and π⁰ reconstruction
efficiencies are currently the biggest uncertainties

Same total systematic error on π^0 yields as in an independent analysis: see David d'Enterria's talk on neutral pions

See Gabor David's poster for further details on systematic error evaluation

⇒ Hope to significantly reduce uncertainties in the future with refined efficiency calculation methods

Are the Systematic Errors Reasonable? (I)

- Neutral pion spectra from PbGI and PbSc available, analyzed independently by two different teams
- Results agree within the quoted systematic errors

Are the Systematic Errors Reasonable? (II)

⇒ Spectra determined with different systematics agree within errors

Results for Au+Au at $\sqrt{s_{nn}}$ = 130 GeV

No photon excess seen within errrors

$(\gamma/\pi^0)_{\text{measured}}$ / $(\gamma/\pi^0)_{\text{simulated}}$: Peripheral

Boxes: 1σ systematic error

$(\gamma/\pi^0)_{\text{measured}}$ / $(\gamma/\pi^0)_{\text{simulated}}$: Central

- No photon excess seen within errors
- Working on better understanding of systematics

Summary

- First try of direct photon measurement in Au+Au at RHIC
- No photon excess found within errors in central and peripheral Au+Au reactions at $\sqrt{s_{NN}}$ = 130 and 200 GeV
- There's legitimate hope to significantly reduces systematic uncertainties in the future