

Centrality Dependence of Charged Particle Multiplicity in Au+Au Collisions at $\sqrt{s_{nn}} = 130 \text{ GeV}$

Klaus Reygers
University of Münster, Germany
for the PHENIX Collaboration

Geometrical Aspects of A+A collisions

- Clear separation between nucleons participating in the A+A reaction and 'spectator' nucleons
- Shape of multiplicity distribution of produced particles is governed by reaction geometry

Participating Nucleons

- Participants
 ('Wounded Nucleons'):
 All nucleons that suffer at least one inelastic
 nucleon—nucleon collision
 in a nucleus—nucleus
 collision
- Soft processes (small momentum transfer)
 - Big cross section
 - Particle production proportional to N_{part}
- Hard processes (high momentum transfer)
 - Small cross section
 - Particle production proportional to N_{coll}

Centrality Dependence of Particle Production

- Fundamental information about reaction mechanism: Scaling of particle production with N_{part} or N_{coll}?
- Relative contribution of soft and hard processes to particle production

$$dN_{ch}/d\eta = A \times N_{part} + B \times N_{coll}$$

- Test of models of particle production
- Different behavior compared to $\sqrt{s_{nn}}$ = 17.2 GeV Pb+Pb collisions at CERN SPS?

N_{ch}-Scaling at Lower Energies

p+A at 100 GeV:
 (PRL 41, (1985) 94)
 Scaling with N_{part}

→ 'Wounded Nucleon Model'

- Pb+Pb at $\sqrt{s_{nn}}$ = 17.2 GeV
 - WA98 (nucl-ex/0008004): $\left(dN_{ch}/d \, \eta \right)_{mid} \propto N_{part}^{1.07\pm0.04}$
 - WA97 (EPJC 18, (2000) 1, 57): $\left(dN_{ch} / d \, \eta \right)_{mid} \propto N_{nart}^{1.05 \pm 0.05}$

Theoretical Predictions

Wang, Gyulassy, nucl-th/0008014

- Various models predict different trends for N_{ch}/N_{part} for increasing N_{part}
 - Event generator Hijing: increase of N_{ch}/N_{part}
 - Calculation of Eskola, Kajantie, Ruuskanen, and Tuominen 'EKRT-Saturation model': decrease of N_{ch}/N_{part}

PHENIX Collaboration*

Brazil: Sao Paolo

Canada: McGill

China: Academia Sinica, CIAE

France: SUBATECH

Germany: Münster

India: BARC, Banaras Hindu University

Israel: Weizmann Institute

Japan: CNS, Hiroshima, KEK, Kyoto,

Nagasaki, RIKEN, TITech.,

Tokyo, Tsukuba, Waseda

Korea: Korea, Myongji, Yonsei

Russia: IHEP Protvino, JINR Dubna,

Kurchatov, PNPI, St. Petersburg STU

Sweden: Lund

U.S. National Labs: BNL, LANL, LLNL, ORNL

U.S. Universities: Abilene Christian, Alabama-

Huntsville, California-Riverside,

Columbia, Florida State, Georgia State, Iowa State, New Mexico, New Mexico State, SUNY-Stony Book,

Tennessee, Vanderbilt

PHENIX

PHENIX

PHENIX-Setup: Beam View

PHENIX-Setup: Side View

Detectors used in the Analysis

- Zero Degree Calorimeters
 - Measurement of (unbound)
 neutrons with |η| > 6
 - Located at ±18.25 m from interaction region
- Beam Beam Counters
 - Two arrays of 64
 photomultipliers, each with quartz Cherenkov radiator
 - Full azimuthal coverage,
 η-acceptance: ± (3.0–3.9)

Pad Chambers

- Two layers (PC1, PC3) with radial distance of 2.49 m and 4.98 m to interaction region
- η -acceptance: $|\eta| < 0.35$
- Each layer consists of 8 wire chambers with cathode pad readout
- Intrinsic efficiency for charged particles > 99%

Beam Beam Counter

BBC timing resolution: $\sigma_t \approx 40 \text{ ps}$

Vertex position resolution: $\sigma_z \approx 1 \text{ cm}$

Trigger

- PHENIX–Trigger:
 - ZDC coincidence(E > 10 GeV in both ZDCs)
 - BBC coincidence

 (at least two photomultipliers
 fired in each BBC)
- ZDC–Trigger condition includes mutual Coulomb dissociation processes

- In this analysis:BBC trigger required
- BBC-trigger corresponds to (92 ± 2)% of the inelastic Au+Au cross section (σ_{inel.} = 7.2 b).
- 97.8% of the analyzed events also satisfy ZDC trigger condition

Vertex Distribution

Events with |z|<17 cm accepted for further analysis

Charged Multiplicity Determination

 Strategy: count tracks in PC1/PC3 on statistical basis, no explicit track reconstruction

Analysis steps:

- Reconstruct vertex (with lines formed by all possible PC1/PC3 hit combinations)
- Count lines that fall in a window around the reconstructed vertex
- Determine combinatorial background lines by event mixing

Measurement without magnetic field!

Vertex Distance Distribution

- Long Tail due to particle decays
- Tracks are counted up to
 R = 25 cm
- 96% of all tracks lie within the R = 25 cm window

Background Subtraction

Background subtracted on a statistical basis, not event-by-event

dN_{ch}/dη in central Au+Au Collisions

- Corrections for N_{ch} –measurement:
 - A) Pad Chamber inactive regions:15.3%
 - B) Track losses due to finite double hit resolution: 13.3% in central collisions
 - C) Charged Particles decaying in flight (mainly π^{\pm})
 - D) Decays of neutral particles (K_S^0, π^0)
- Corr. C) and D) rely on Hijing, net correction is 2.8%

- PHENIX result for 6% most central events:
 dN_{ch}/dη = 609±1(stat.)±37(sys.)
- Slightly higher than PHOBOS result:

$$dN_{ch}/d\eta = 555\pm12(stat.)\pm35(sys.)$$

(PRL 85, 3100 (2000))

Multiplicity Distribution

Centrality Selection with ZDC and BBC

- Solid line indicates
 (Q_{BBC}, E_{ZDC}) centroid
 positions for fixed Pad
 Chamber multiplicity
- Centrality classes were defined with cuts perpendicular to centroid position curve

Calculation of N_{part} and N_{coll}

- Glauber model approach: geometrical picture of a A+A collision
 - Straight–line nucleon trajectories
 - NN-cross-section independent of the number of collisions the nucleons have undergone before

- Parameters
 - Nuclear density profile (Woods–Saxon distribution)

$$\rho(r) = \rho_0 \cdot \frac{1}{1 + \exp(\frac{r - R}{d})}$$

$$R = 1.19 A^{1/3} - 1.61 A^{-1/3} = 6.65 fm$$

$$d = 0.54 fm$$

Nucleon–nucleon inelastic cross–section:

$$\sigma_{nn} = 40 \, mb$$

Projectile's view of the Target Nucleus

- Monte–Carlo method was used for N_{part} and N_{coll} determination
 - Distribute nucleons randomly according to Woods–Saxon distribution
 - Collision between two nucleons takes place if

$$d < \sqrt{\sigma_{nn}/\pi} = 1.13 \, fm$$

d: distance of the nucleons in the transverse plane

Extracting N_{part} and N_{coll}

- Define centrality classes as in analysis of real data
- Extract mean of N_{part} and N_{coll} distribution for each class
- Estimate errors by varying model assumptions:

$$rel.error(N_{part})[\%] = 2 + 300/N_{part}$$

 $rel.error(N_{coll})[\%] = 15 + 400/N_{coll}$

Centrality Dependence of dN_{ch}/dη

Model Comparison I

Model Comparison II

Kharzeev's and Nardi's calculations (nucl-th/0012025, Dec. 8)

+ : Glauber Model

♦ : high density QCD

Comparison to CERN SPS Results

- - N_{part}^{α} -parameterization

$$(dN_{ch}/d\eta)_{mid} \propto N_{part}^{1.16\pm0.04}$$

– Param. with N_{part} and N_{coll}

$$dN_{ch}/d\eta = A \times N_{part} + B \times N_{coll}$$
$$B/A = 0.38 \pm 0.19$$

• Au+Au at $\sqrt{s_{nn}}$ = 130 GeV: • Pb+Pb at $\sqrt{s_{nn}}$ = 17.2 GeV

- N_{part}^{α} -parameterization

WA98: $(dN_{ch}/d\eta)_{mid} \propto N_{part}^{1.07 \pm 0.04}$

WA97: $(dN_{ch}/d\eta)_{mid} \propto N_{part}^{1.05\pm0.05}$

- Param. with N_{part} and N_{coll}

WA98: $B/A = 0.20 \pm 0.10$

Summary

- Centrality dependence of particle production has been measured in $\sqrt{s_{nn}}$ = 130 GeV Au+Au collisions
- Yield/participant increases with centrality, in contrast to EKRT saturation model predictions
- Indication of stronger increase of yield/participant than observed at CERN SPS for Pb+Pb

Simple ZDC and BBC Simulation

ZDC

 coalescence of spectator neutrons has to be simulated: use NA49 data (Pb+Pb)

energy smearing

$$\sigma_E/E = 218 \% / \sqrt{E/GeV}$$

BBC

- assume relation between N_{part} and N_{ch}^{BBC} (default: linear scaling)
- fluctuations in N^{BBC} for given N by sampling Poisson-distribution for each participant
- Sample Landau–distribution to simulate BBC response

Error estimation: Npart

$$rel.error(N_{part})[\%] = 2 + 300/N_{part}$$

Error estimation: Ncoll

