Elastic and diffractive scattering, CERN, July 2nd 2009

Raphaël Granier de Cassagnac Laboratoire Leprince-Ringuet PHENIX and CMS experiments

QCD AND HEAVY IONS RHIC OVERVIEW

WHAT TELLS QCD? (ON THE LATTICE)

× Strong interaction is strong at low energies but weak at high energies + Asymptotic freedom × Lattice QCD predicts a phase transition from a Hadron Gas to a Quark Gluon Plasma (QGP) + $T_c \approx 190 \text{ MeV} (2 \times 10^{12} \text{ K})$ + $\varepsilon_c \approx 1 \text{ GeV/fm}^3$

Karsch et al, hep-lat/0106019 Lect. Notes Phys.583 (2002) 209

→ But doesn't tell us everything about the matter's observable and dynamical properties

WHAT'S RHIC?

Relativistic Heavy Ion Collider
 Brookhaven National Lab.

- × First collisions in 2000, running...
- × 2 large (STAR & PHENIX) >2x600m

+ 2 smaller (PHOBOS & BRAHMS) experiments
* Can collide anything from p+p (up to 500GeV, in 2009) to Au+Au (up to 200GeV per nucleon pairs)

WHAT IS THE STRATEGY? (AND JARGON)

- × Predict a QGP signature
- × Look at it versus A+A collision centrality \rightarrow
- Compare to p+p
 - + Nuclear modification factor

$$\left(R_{AA} = \frac{dN^{AuAu}}{dN^{PP} \times \langle N_{coll} \rangle} \right)$$

- ★ Without QGP, hard probes should have $R_{AA} \approx 1$
- Compare to p+A (or d+A)
 - + Check that normal nuclear matter cannot account for deviations...

- × Non zero impact parameter
 - + Number of spectators
 - + Number of participants N_{part}
 - + Number of NN collisions N_{coll}

→ Derive a QGP property (temperature, density...)

WHICH SIGNATURES?

- 1. <u>Total multiplicity</u>
- 2. <u>High p_T suppression</u>
- 3. Back to back jets
- 4. Elliptic flow
- 5. Baryon/meson
- 6. Heavy flavour
- 7. <u>J/ψ suppression</u>
- 8. Thermal radiation

9. ...

- ≈ "Color Glass Condensate"
- \approx "Jet quenching"
- ≈ "Perfect fluid"

→ Not the only ones! Impossible to give an overview in 20 mn... Restrict to selected <u>underlined</u> topics

1. TOTAL MULTIPLICITY (AND E_T)

- × $dN_{ch}/d\eta|_{\eta=0} \approx 670$ + (6000 particles total)
 - Less than expected!
 - + 1000 from p+p fragmentation
 - Low x_{Bj} gluon start to overlap, recombine, saturate...
 - (so more at forward rapidity)
 - "Color Glass Condensate"

→ The (initial) matter saturates

× $dE_T/d\eta|_{\eta=0}$ related to energy density

× $\epsilon > 6 \text{ GeV/fm}^3 > \epsilon_c!$

The smoking gun...

JET QUENCHING

2. HIGH P_T SUPPRESSION

× RHIC smoking gun signature! + Two PRL covers × Energy loss in the matter, looking at "high" p_{T} (>2GeV/c) hadrons + Mostly from jet

- fragmentation
- × "Jet quenching"

MOST PERIPHERAL COLLISIONS...

(slightly old, but pedagogical, data)

PHENIX, PRL 91 (2003) 072303

LESS PERIPHERAL COLLISIONS...

(slightly old, but pedagogical, data)

PHENIX, PRL 91 (2003) 072303

MORE CENTRAL COLLISIONS...

(slightly old, but pedagogical, data)

PHENIX, PRL 91 (2003) 072303

Au-Au (0-10%)

d+Au (0-20%)

2. HIGH P_T SUPPRESSION PHENIX, PRC77 (2008) 064907

3. BACK TO BACK JETS

look at the others $(p_T > 2GeV/c)$ azimuth

3. BACK TO BACK JETS ANOTHER LOOK TO JET QUENCHING...

15

disappear because of jet quenching

NEW TOOL: JET RECONSTRUCTION?

- × First reconstructed jets in AA
- × Use of fastjet algorithms
- × $R_{AA} \approx 1$ for large cone R=0.4
- ★ Jet broadening R_{AA} <<1 for R=0.2</p>
- × Promising preliminary data

R

The originally thought "unambiguous signature"

QUARKONIA SUPPRESSION

7. J/Ψ SUPPRESSION

- × J/ψ (cc) can melt in QGP Matsui & Satz, PLB178 (1986) 416
- ★ Golden signature @ SPS
 (@ CERN √s ≈ 20 GeV)
 → QGP discovery claim!
 - **@RHIC**, same rapidity, suppression looks surprisingly similar
 - + While density is higher
- Stronger @ forward
 - + While density is lower
- But beware of nuclear matter!

7. J/ Ψ SUPPRESSION (FROM D+AU)

- Cold nuclear matter can also suppress J/ψ
 - + pdf shadowing, saturation
 - + absorption by incoming nucleons?
 - + ...
- Extrapolation from d+Au
 - + Data driven, mostly model independent
 - + Large uncertainty
- At least forward J/ψ are suppressed beyond cold matter effects

 \rightarrow The matter is deconfining

7. NEW D+AU PRELIMINARY REFERENCES

- × Run 8 \approx 30 times more d+Au data
- × Preliminary, central to peripheral d+Au ratio (R_{CP}) released @ QM09
 - + First extrapolation assuming EKS98 shadowing and effective absorption xsection, varying with rapidity (© T. Frawley)
- → Similar anomalous suppression wrt rapidity
- Outcome of Trento and Seattle summer workshops. R. Arnaldi, T. Frawley, M. Leitch, R. Vogt, RGdC...

- × In addition, lines up with SPS when plotted as
 - + Energy density x formation times

Not a PHENIX Result

FIRST LOOK AT BOTTOMONIA...

- × $R_{dAu} = 0.98 \pm 0.32 \pm 0.28$ (from STAR)
- × R_{AuAu} < 0.64 @ 90% CL (from PHENIX →)
 - + Could be cold effects
 - + No continuum subtraction
 - × (but < 15% from pp)
 - + Feeddown of χ_b important × 50% for $p_T > 8$ GeV/c at CDF
- × Promising <u>preliminary</u> data× Stay tuned...

E.T. Atomssa, C.S. da Silva, H. Liu, Z. Conesa del Valle @ QM09

Still one or two slide to go...

THERMAL RADIATION

8. THERMAL RADIATION

\rightarrow The matter is hot !

X Direct photon from + Real ($p_T > 4 \text{ GeV/c}$) + Virtual ($m_{ee} < 300 \text{ MeV}/c^2$) × In p+p pQCD works well down to $p_T=1 \text{ GeV/c} \rightarrow$ × In Au+Au, excess below $p_T = 2.5 \text{ GeV/c}$ × Simple fit: + <Temperature> \approx 220 MeV × Hydrodynamical fits: + Initial temp. 300 to 600 MeV + Time 0.15 to 0.6 fm/c

IN SUMMARY...

- × Even if we have
 - + Neither seen an order parameter of the phase transition
 - + Nor counted its degrees of freedom
- × The RHIC Au+Au matter is:
 - <u>Gluon saturated</u>, <u>dense and opaque</u>, strongly interacting and liquid-like, partonic and <u>deconfining</u>, tough and <u>hot</u>...
 thus likely to be a quark-gluon plasma
- LHC Pb+Pb matter to come (see next talk)

× Bibliography:

- + Experimental "white papers":
- + Quark matter 2009 conference (Knoxville, March 30, April 4th)
- + Interesting reviews, for instance:

NPA757 (2005), PHENIX: nucl-ex/0410003

http://www.phy.ornl.gov/QM09/

RGdC, <u>arXiv:0707.0328</u> IJMP A22(2008)6043

BACK UP SLIDES...

SPS VS RHIC, NPART VS E.DENSITY X TIME

3. BACK TO BACK (D+AU)

 As always, it is very important to check for d+Au

STAR, PRL 91 (2003) 072304

@ LHC, full jet reconstruction...

Here, all plots from STAR, see also PHENIX: PRC78 (2008) 014901

3. MUCH MORE CORRELATION...

NEW TOOL: GAMMA-JET

photon

away

- × Photon ≈ unmodified "reconstructed" jet
- × Suppression is similar _ 30.6
 - + Yield per trigger particle
 - + Normalized to p+p
- Can start addressing the question of modified fragmentation function

PHENIX: arXiv/0903.3399 M. Connors, QuarkMatter09

4. IDEAL HYDRODYNAMICS

- × Ideal hydrodynamics...
 - + QGP equation of state,
 - + Early thermalization
 - × (0.6 fm/c)
 - + High density
 - × (≈30 GeV/fm³)
- x Little need for viscosity!
 - + First estimations are
 - × approaching the quantum limit $\eta/s = \hbar/4\pi$
 - \times lower than Helium at T_c

... reproduces fairly well

- Single hadron p_T spectra
 (mass dependence)
 - $\times <\beta_T > \approx 0.6$
- 2. Elliptic flow
- Not the foreseen ideal partonic gas!
- → "sQGP" (s stands for strong, not super ③)
- → "Perfect fluid"
- → The matter is strongly interacting and liquid like
 @ LHC, could it approach a quark gluon gas?

4. ELLIPTIC FLOW (SCALINGS)

5. BARYONS/MESONS

STAR, PRL 97 (2006) 152301

6. HEAVY QUARKS?

PHENIX, PRC76 (2007) 034904

- × Electrons from heavy flavour's decay (D,B → e...) suffer (large) quenching and flow! Was a surprise!
 - + Thermalization?
- What makes the charm quench ?
 - + Gluon density is to low!
 - + Beauty contribution?
 - + Elastic energy loss?
- Not well understood yet

Note that $R_{AA} = 1$ for most of charm H A van Hees et al. (II) 3/(2xT) Moore &) 12/(2nT) Teaney (III) 2º Ras, p. > 4 GeV/c $x^0 v_0, p_* > 2 \text{ GeV/c}$ e' R.e. e' vi ENIX PH p_[GeV/c]

→ The matter is tough...@ LHC, more thermalization?

HISTORHIC

[1] PRC691(2004) 0149010in2p3.[4]PRb98(2007) 232301[2] PRL92 (2004) 051802[5] PRL98 (2007) 232002[3] PRL96 (2006) 012304[6] PRL101 (2008) 122301

Année	lons	$\sqrt{s_{_{NN}}}$	Luminosité	Statut (J/ψ)	J/ψ (ee + μμ)
2000	Au-Au	130 GeV	1 μb ⁻¹	Central (elec.)	0
2001/02	Au-Au	200 GeV	24 μb⁻¹	Central (elec.)	13 + 0 [1]
	р-р	200 GeV	0,15 pb ⁻¹	+ 1 muon arm	46 + 66 [2]
2002/03	d-Au	200 GeV	2,74 nb ⁻¹	Central	360 + 1660 [3]
	р-р	200 GeV	0,35 pb ⁻¹	+ 2 muon arms	130 + 450 [3]
2003/04	Au-Au	200 GeV	241 μb ⁻¹	Published	≈ 1000 + 4500 [4]
	Au-Au	63 GeV	9 μb ⁻¹	Preliminary	≈ 13
2004/05	р-р	200 GeV	3.8 pb ⁻¹	Published	≈ 1500 + 10000 [5]
	Cu-Cu	63 GeV	190 mb ⁻¹	(unlooked)	≈ 10 + 200
	Cu-Cu	200 GeV	3 nb ⁻¹	Published	≈ 1000 + 10000 [6]
2006	р-р	200 GeV	10,7 pb ⁻¹	Preliminary	> 2000 + 27000
2007	Au-Au	200 GeV	813 μb ⁻¹	Preliminary (v_2)	> 3400 + 15000
2008	d-Au	200 GeV	80 nb ^{–1}	QM 2009 ?	≈ 10000 + 40000

ENERGY DENSITY ESTIMATION

Transverse energy @ y=0

Bjorken formula

$$\varepsilon = \frac{1}{\pi R^2 \tau_0} \times \frac{dE_T}{dy} \Big|_{y=0}$$

 τ_0 formation time 0,35 à 1 fm/c

R = nuclear radius 1.18 $A^{1/3}$ fm

 ϵ > 6 GeV/fm³

Bjorken, PRD27 (1983) 140

MORE NUCLEAR MODIFICATIONS...

HIGHER PT

38

OPEN CHARM

A LINK TO STRING THEORY?

Juan Maldacena, ATMP 38 (1999) 1113 (>4500 citations)

Anti de Sitter/Conformal Field Theory correspondence

Strongly coupled N=4
 <u>super</u> Yang Mills theory

- × <u>Super</u> QCD
- × <u>Super</u> QGP

Weakly coupled type IIB string theory on AdS₅xS⁵

- × Dual gravity
- × Black hole

 → Can predict
 some properties
 (viscosity/entropy, quenching ...)