Heavy flavor results from PHENIX at RHIC

Raphaël Granier de Cassagnac on behalf of the PHENIX collaboration LLR – École polytechnique / IN2P3

> Deep Inelastic Scattering Madrid, 2009, April 27th

As an introduction

- Phenix primary goal is the study of the quark gluon plasma, through A+A collisions
- - Open charm and beauty in p+p collisions
 - From single electron at $y \approx 0$, single muon at $y \approx 1.7$,
 - From dielectron, e-h and e-µ correlations...
 - Quarkonia in p+p collisions
 - J/ ψ , ψ ' and Y at y=0, J/ ψ at y≈1.7, J/ ψ polarisation
 - J/ψ in d+Au collisions

The PHENIX apparatus

- Electron in RICH and EMCAL
 - $|\eta| < 0.35$
 - $p_e > 0.2 \text{ GeV/c}$
 - $\Delta \phi = 2 \times 90^{\circ}$

(also hadrons)

- Muon in tracker and identifier
 - $-1.2 < |\eta| < 2.4$
 - $p_{\mu} > 2 \text{ GeV/c}$
 - $\Delta \phi = 360^{\circ}$

(stopped hadrons)

Single leptons, dilepton correlations, or hadron-lepton kinematics

OPEN CHARM AND BEAUTY

Total heavy flavour from single electrons

- Subtract the cocktail of known (measured) sources:
 - π⁰ and η Dalitz decays, conversion, etc.
- Crosscheck by inserting a converter
- Agreement with FONLL calculation, with uncertainties
- Charm xsection derived:

 σ_{cc} = 567 ± 57 ± 224 µb

<u>Open</u> heavy flavour from single electrons

- <u>New</u>: Subtract J/ψ, Upsilon and Drell-Yan
 < 20% decrease for p_T > 5 Gev/c
- Better agreement with FONLL calculation
- Low p_T dominated by charm
- Does not allow to separate b contribution

b/c+b from e-K correlations

b/c+b from e-h correlations

σ_{cc} and σ_{bb} from single electron and dielectron agree with each other, and with NLO pQCD

Charm from single muon at forward rapidity

2009, April 27th

Midrapidity e + forward µ correlations

- Long awaited golden channel for heavy flavors
- Angular correlation \rightarrow
- Proof of principle for future charm cross section (intermediate rapidity)

T. Engelmore, QuarkMatter09

J/ ψ vs p_T and y, J/ ψ polarisation, ψ ' and Y, J/ ψ in d+Au collisions...

QUARKONIA

 J/ψ versus rapidity

- Improved statistics
- Reducing systematics...

 J/ψ polarization

- New colour singlet model + s-channel cut (off shell charm quarks)
 - Adjusted to Tevatron
- working well for:
 - rapidity and (low) $\ensuremath{p_{\text{T}}}$
 - polarization at y≈0
- less (≈2σ) for:
 - Polarization at y≈1.7

Habersettl and Lansberg PRL100 (2008) 032006

Other quarkonia @ y=0

ψ' @ midrapidity

10

global errors = 10% ψ '/ψ ratio $\sqrt{s}=200 \ GeV \ |y|<0.35$ [nb/(GeV/c)²] $-p+p \rightarrow J/\psi$ – Of the order of 2% $\rightarrow p+p \rightarrow \psi'$ PH ENIX 101 - No strong p_{T} PRELIMINARY dependence Feed down to J/ψ PHENIX ₫0_₩, \leftrightarrow HERA-B $\sqrt{s} = 41.6 \text{GeV}$ $= 8.6 \pm 2.5 \%$ from ψ $\Delta CDF \sqrt{s} = 1.8 TeV$ $B_{\psi^{\prime}
ightarrow ee}$ < 0.38 90% CL < 42 % (90 % CL) from χ_c Y **14** \approx 1 to 4 % from B p_T [GeV/c]

M. Donadelli, PANIC08

New: Upsilon @ midrapidity

- 12 unlike and 1 like sign pairs in [8.5;11.5] GeV/c²
- Background < 15%
 - (1.6 counts)
 - Drell-Yan and B decays
- Derived xsection:

J/ψ in d+Au collisions

- At RHIC, we expect two normal nuclear effects:
 - Gluon pdf modification, various models...
 - J/ ψ absorption on nucleons (σ_{abs})
- As <u>an example</u>, a fit to data assuming the EKS shadowing scheme →
- Large uncertainties $> 2 \text{ mb on } \sigma_{abs}$

 J/ψ in d+Au collisions

Ъ С

2

0.6

RHIC 2008

40-60%

d+Au√s_{NN} = 200 GeV

-11% Global Scale Uncertainty

PHENIX preliminary

EPS08 $\sigma = 0, 1, 2, 3, 4, \dots 15^{\circ}$

- Analysis of run 8
 - (30 x run3)
 - Allows more binning
 - R_{CP} for now (systematic cancelling out)
 - R_{dA} underway...

ψ ' from dielectrons

 \rightarrow RHIC also providing p+p

collisions @ 500 GeV this year

Upsilon from dielectrons and dimuons...

As an outlook...

- All of the above are important inputs to understand the quarkonia suppression observed in Au+Au collisions @ RHIC, which is indeed puzzling:
 - Why are J/ψ more suppressed at forward rapidity?
 - At midrapidity, why are they suppressed as at lower energy?

BACK UP SLIDES

Single electron cocktail

e-h correlations

- e-K (no Pld)
- Unlike sign near-side pairs
- Subtract like sign pairs
- Tagging efficiency for c and b from Pythia

X_C

J/ψ polarisation

