Present experimental status: EM probes, heavy quarks and quarkonia

Raphaël Granier de Cassagnac LLR – École polytechnique / IN2P3

> Hard Probes 2008 Illa da Toxa, Galicia, Spain, Illa da Toxa (Galicia-Spain)

> > 2008, June 14th

Disclaimer

- As asked by the organizers, not a mere summary, but a critical review...
 - So, apologies to people I will not cite
 - So, apologies to people I will cite
- My biases: rhic, phenix, quarkonia, experimental <u>data</u> and parallel sessions.
- <u>Data</u> related talks ≈ 3 EM probes + 6.5 heavy quarks + 12.5 quarkonia.

EM probes, heavy quark and quarkonia...

Photons

The historians of heavy ion collisions

Dinesh K. Srivastava

High p_T photons

• Should be THE reference, but they are modified:

Arleo, JHEP09 (2006) 015

- Isospin effect (n≠p)
- --- + cold nuclear effect (EMC from EKS)
 - \sim + eloss 20 < ω_c < 25GeV (from quarks)
- Gauge why it is different from AuAu vs CuCu...
- Wait for final data
- Can be an issue for (high p_T) gamma-jet...

Low p_T photons

- Direct photon
 - real ($p_T > 4 \text{ GeV/c}$) and
 - virtual ($1 < p_T < 4 \text{ GeV/c } \&$ $m_{ee} < 300 \text{MeV}$) New pp!
- Good surprise: pQCD consistent with pp down to p_T = 1 GeV/c
- In AuAu above binary scaling for p_T < 2.5 GeV/c

TABLE I: Summary of the fits. The first and second errors are statistical and systematical, respectively.

centrality	$dN/dy(p_T > 1 \text{GeV}/c)$	$T({ m MeV})$	χ^2/DOF
0-20%	$1.10 \pm 0.20 \pm 0.30$	$221\pm23\pm18$	3.6/4
20-40%	$0.52 \pm 0.08 \pm 0.14$	$214\pm20\pm15$	5.2/3
MB	$0.33 \pm 0.04 \pm 0.09$	$224 \pm 16 \pm 19$	0.9/4

Thermal radiation

- New pp reference confirms pQCD baseline that was used and from which various hydro models derived:
 - Initial temperature[300-600 MeV]
 - Time [0.15-0.6 fm/c]
- The matter is hot !

- T >> Tc

d'Enterria & Peressounko, EPJ. C46 (2006) 451

Dileptons

An electromagnetic probe mixed up with hadronic signals (meson modification, charm loss...)

Dielectron pp vs AuAu in PHENIX

Various components of the spectrum

2008, June 14th

EM probes, heavy quarks, quarkonia - raphael@in2p3.fr 10/38

p_{T} dependence in the LMR

- Phenix sees an enhancement at low p_T and faster than N_{part}
- Thermal radiation? Meson modification? Background systematics?
- Beginning of a long story... That a functional Hadron Blind Detector might help to resolve...

NA60, below J/ψ

S. Damjanovic

V. Koch

Just call them Bob...

Some p broadening (no shift)

 \rightarrow Dileptons are definitely difficult probes to interpret!

Heavy quarks

"Better behaving observable"

Do we know the total charm cross-section?

No, say the theorists

"Yes, but they don't" X. Dong

say the experimentalists...

A. Dion

What would be nice...

- D's in PHENIX
- Run8 low material (BG/10) in STAR
- Please, fill these gaps !

Heavy flavour suppression was a surprise

2008, June 14th

EM probes, heavy quarks, quarkonia - raphael@in2p3.fr 15/38

Heavy flavour suppression was a surprise

- Radiative is not enough
 Collisional ?
 G. Martinez, P4 PLB663 (2008) 55
- Baryon/Meson?
 - 10-25% effect even at high p_T
- Charm/beauty? (next slide)
- Or maybe a universal upper bound on energy leaving only room for corona emission...

D. Kharzeev 0806.0358

Heavy flavour suppression was a surprise

EM probes, heavy quarks, quarkonia - raphael@in2p3.fr

 $b \rightarrow e/(c \rightarrow e + b \rightarrow e)$

A. Mischke, P4

- Before the silicon era...
- Making use of various B/D decay kinematical differences...
- For instance:

ſ×

- Electron-D azimuthal correlations
- → b/c+b \approx 50% @ p_T \approx 5 GeV

Heavy flavor elliptic flow

- Also a surprise!
- Now, do bees fly?
 - Need the b/c+b in AA
 to properly estimate
 the b flow...
- (todo : average the 2 datasets cause they have different stat/syst balance)

We need to enter in the silicon era...

• PHENIX

• STAR

Quarkonia

Almost every new piece of experimental information on quarkonium production presents a new "puzzle"

Do we understand quarkonia in vacuum?

J.P. Lansberg

- Better than before! The return of the CSM
 - With off-shell charm quarks (J/ψ @Tevatron and RHIC) →
 - With higher order (NNLO) corrections (Y @Tevatron)

- No room for large polarization @RHIC forward rapidity
 - To be calculated by theorists and compared

Revisiting SPS...

- "Very preliminary" analysis of NA60 pA @ 158 AGeV exhibits <u>three surprises</u>:
- 1. $\sigma_{abs} = 7.1 \pm 1.0 \text{ mb}$
 - Was 4.5 ± 0.5 mb from
 400/450 AGeV (diff 2.3σ)
 - Which NA60 finds back ⁽²⁾
 - Seems a rather large jump wrt to higher energies (incl.
 200 AGeV) ⊗
 - As well as wrt to an energy dependence extrapolation based on a subset of the above data and giving
 - $\sigma_{abs} \approx 5.0 \text{ mb} \rightarrow$

24/38

Revisiting SPS...

- The anomalous suppression 2. pattern exhibits the return of the J/ ψ in In-In...
 - Could be related to σ_{abs}
 - Missing systematics ? 😁
 - Doesn't change the qualitative Pb-Pb picture 🙂
- $< p_T^2 > vs L$ exhibits a different 3. slope 🛞 wrt to
 - A-A @ 158 AGeV
 - p-p to S-U @ 200 AGeV
 - p-A @ 400 AGeV
 - (Found back by NA60 \odot)
 - (statistical analysis needed)
- If confirmed, what's so special about pA @ 158 AGeV?

EM probes, heavy guarks, guarkonia - raphael@in2p3.fr

The Au-Au RHIC J/ ψ puzzle(s)

- Two surprises
 - R_{AA} (RHIC,y=0) $\approx R_{AA}$ (SPS)
 - $R_{AA} (y=0) > R_{AA} (y<1.7)$
 - While energy density induced suppression mechanisms...
- Two possible solutions
 - Cold nuclear effects?
 - And maybe only the excited states melt...
 - Hot regeneration?

So now, the question is COLD EFFECTS ? - ? RECOMBINATION

2008, June 14th

EM probes, heavy quarks, quarkonia - raphael@in2p3.fr 27/38

H. Woehri F. Fleuret, P6 V.N. Tram, P7

COLD EFFECTS 3 - 2 RECOMBINATION

EM probes, heavy quarks, quarkonia - raphael@in2p3.fr

28/38

Cold effects: a trauma for <u>experimentalists</u>

- <u>Woehri</u>, Lourenco and Vogt care for
 - $-\sigma_{abs}$ energy dependence
- Fleuret et al care for
 - the $p_{\rm T}$ dependence of shadowing
 - extrinsic g+g \rightarrow J/ ψ +g (usually neglected) \uparrow
- Tram and Arleo care for
 - a global (uneasy) fit of σ_{abs} to all available data
 - shadowing scheme dependence of σ_{abs}
 - $-\sigma_{abs} = 3.5 \pm 0.2 \pm 1.7 \text{ mb}$

Tram & Arleo, EPJ. C 55, 449-461 (2008)

Do we understand J/ ψ in nuclear matter?

 \rightarrow Should we really rely on shadowing and σ_{abs} ?

A more data driven way...

• Plug the <u>centrality</u> and rapidity dependence or RdAu in a Au-Au Glauber model = no need for shadowing or σ_{abs} + proper error propagations...

We need/have d-A data !

The alternate explanation: regeneration

- A large variety of recombination / coalescence models...
- The two we saw here agree that not more ≈ 20% of the J/ψ comes from recombination
 - Thews study the y and p_T shape
 - − Tywoniuk et al don't even really need recombination (but shadowing) →

Additional little measurements start to shed some light on quarkonia... High p_T from STAR, feed-down contributions, and elliptic flow...

STILL THREE SLIDES TO GO...

High $p_T J/\psi$ from STAR

- R_{CuCu}(high p_T) increase
 Not new (NA50,NA60...)
- First, it could be due to Cronin $\rightarrow 2^{\stackrel{\scriptstyle <}{\scriptstyle \sim}}$
 - Need to measure this in dAu!
- Then, could also be
 - Leakage (formation time)
 - Bottom contribution

T. Ullrich

Feed down

P. Faccioli, P6 T. Ullrich E.T. Atomssa

- J/ψ from ψ' from world average 8.1 ± 0.3%
 – 8.6 ±2.5% from PHENIX
- J/ ψ from χ_c less precise 26 ±4% (from pA, excluding π A)
 - < 42 % @90 % CL (PHENIX)</p>
- J/ψ from B = 4 ⁺³/₋₂% from total b xsection and LEP-Tevatron admixture x BR

• J/ ψ -h correlations also points that feed-down from B < 15% for $p_T > 5 \text{ GeV } \downarrow$

J/ψ elliptic flow, yet another surprise?

E.T. Atomssa F. Prino, P6 C. Silvestre, P6

- <u>Large uncertainties</u>!
- J/ψ azimuthal anisotropy at SPS!
 - PbPb and InIn
 - Differential absorption?
- While J/ψ (all p_T) have a low probability (6%) to have positive flow at RHIC...
- → <u>Need more data</u>!
- \rightarrow Difficult interpretation

EM probes, heavy quarks, quarkonia - raphael@in2p3.fr 37/38

Conclusions: what's new since HP06?

- How has our understanding progressed?
- Well, not tremendously...
 - Main observations were there!
 - Main puzzles are still here!
 - A few additional surprises!
- However, <u>a lot</u> of <u>little</u> (statistically speaking) but <u>interesting</u> measurements $(J/\psi v_2, high p_T, Y...)$ or p-p references (photon, ψ' , h-J/ ψ , b/c+b...)
 - Partly thanks to important upgrades (STAR/EMCAL, PHENIX/RxNP...)
 - Thus, we are progressing!
- But to move forward, we need a step in S/B
 - More luminosity @ RHIC (dAu!) then RHIC2
 - New discriminating detectors (HBD, silicon era...)
 - And probably we also need the LHC, Andrea?