Quarkonia from SPS to RHIC and from pA to AA

Raphaël Granier de Cassagnac LLR – École polytechnique / IN2P3

Early Time Dynamics in Heavy Ion Collisions Montréal, 2007, July 16th

The "normal" introduction...

Matsui & Satz, PLB178 (1986) 416

- In 1986, Matsui & Satz predicted an "unambiguous" signature of QGP
 - Disappearance of quarkonia above a certain temperature / energy density threshold
- Where do we stand today?
 - What is the J/ψ nuclear modification factor?

- Remembering that heavy flavours should and do scale with N_{coll} [PHENIX, PRL94 (2005) 082301

J/ψ in AA, the experimental facts PHENIX: PRL 98 (2007) 232301 NA50: EPJ C39 (2005) 335 NA60: nucl-ex/0706.4361, to appear in PRL

 $R_{AuAu} (y~0) > R_{AuAu} (y~1.7)$

R_{AuAu} vs R_{CuCu} @RHIC

 Wait for Cu+Cu, still preliminary, soon final...

 R_{AuAu} (y~0) ~ R_{AuAu} (SPS)

- Lower rapidity R_{AA} look surprisingly similar, while there are obvious differences:
 - At a given N_{part}, different energy densities...
 - Cold nuclear matter effects (x_{Bjorken}, σ_{abs}...)

First, beware of cold nuclear matter (CNM) effects !

Cold nuclear matter effects ?

- Many possible effects:
 - J/ψ (or $c\overline{c}$) absorption
 - (Anti) shadowing (gluon saturation, CGC...)
 - Energy loss of initial parton
 - p_⊤broadening "Cronin "
 - Complications from feeddown $\psi' \& \chi_c$?
 - Something else ?
- Not well predicted, need
 pA (or dA) measurements!

- Do we fully understand
 CNM @ SPS ?
- Not these surprising rapidity distribution asymmetries \rightarrow
 - Variation of ~30 to
 ~50% in one unit of
 rapidity !
 - Seems large to be (anti)shadowing...
 - Not taken into account in CNM extrapolation...

Cold nuclear matter @ RHIC

- Only centrality dependence in dA (or pA) of J/ψ production !
 - ~ 10% global error not to be forgotten...
- Reproduced by Ramona Vogt
 - Black lines: EKS98 shadowing + σ_{abs} = 0 to 3 mb
 - Colored lines: FGS shadowing + σ_{abs} = 3 mb
- Favoring moderate shadowing
 + moderate absorption...

PHENIX, PRL96 (2006) 012304 Klein, Vogt, PRL91 (2003) 142301

What's on the market?

- Modeling nuclear absorption + inhomogeneous (anti)shadowing
 - Vogt, nucl-th/0507027
- 2. exp -($\sigma_{diss}(y) + \sigma_{diss}(-y)$) $\rho_0 L$
 - Karsch, Kharzeev & Satz, PLB637(2006)75
 - σ_{diss} from fit on dAu data
 - Assume $exp(-\sigma_{diss}\rho_0L)$
 - No error propagation
- 3. dAu data driven Glauber approach
 - RGdC, hep-ph/0701222
 - Fit RdA(b) \rightarrow

- For a given A+A collision at b_{AA} , Glauber provides a set of N+N collisions occurring at b_i^1 and b_i^2
- One minimal assumption is rapidity factorization: $R_{AA}(|y|,b_{AA}) = \sum_{collisions} [R_{dA}(-y,b_i^1) \times R_{dA}(+y,b_i^2)] / N_{coll}$
- Works (at least) for absorption & shadowing since production
 - ~ pdf1 x pdf2 x exp - $\rho\sigma(L_1+L_2)$

RGdC, hep-ph/0701222

13/29

- EKS shadowing+absorption by Vogt & dA-driven Glauber by RGdC
- Clear anomalous suppression (stronger @ y~1.7)

Temptation to divide RAA / CNM is great, but beware of p+p baselines!

 Different p+p references used for R_{AA} and R_{dA}

- J/ψ survival probability
 - $\sim \mathsf{R}_{AA} \; / \; (\mathsf{R}_{\mathsf{d}A})^2$
 - = (AA/run5pp) / (dA/run3pp)²
- Run3pp < Run5pp
 - More suppression from CNM have to be taken into account...
 - (run5pp/run3pp)² = 1.21 @ y=1.7
 - (run5pp/run3pp)² = 1.49 @ y=0 !
 - But systematic errors cancelation to be revisited...
 - Work in progress in PHENIX...
 - For now ~ 30% syst. error !
- Is σ_{abs} really smaller @RHIC?

- First R_{AA}/CNM extraction including (proper) error propagation
 - d+Au and p+p errors
 - Systematics from Glauber
 & function used for RdA(b)
- Boxes are correlated errors from AuAu & <u>dominant</u> CNM
- Accounting for all errors :
 - S(J/ψ) = 44 ± 23% @γ=0
 - $S(J/\psi) = 25 \pm 12\% @y=1.7$
 - in the most central collisions...

 J/ψ survival beyond CNM

17/29

R_{AA} / CNM @ RHIC & SPS

- At mid-rapidity, the amount of surviving J/ψ @ RHIC is still compatible with SPS (~60%) but depends a lot on CNM (and pp references)...
- At forward rapidity, RHIC anomalous suppression is much stronger !

 J/ψ survival beyond CNM

Now... What's going on with the anomalous suppression?

- Several models could fit NA50
 - Plasma (either thermal or percolative)
 - Comovers (hadronic or partonic ?)
- Now NA60...
 - Difficult to reproduce...

Roberta Arnaldi, QM05 Final in nucl-ex/0706.4361

See Carlos Lourenço's talk...

"NA50 only" effects @ RHIC

- $J/\psi \sim 0.6 J/\psi + 0.3 \chi_c + 0.1 \psi'$
- Was a consensus that
 - J/ψ melt at ~2T_c (~32 ε_c !)
 - Excited states around 1.1 $\rm T_{c}$ (see eg Satz, hep-ph/0512217)

- Ratio not (well) known
 - <u>At least</u> ~10% uncertainty
 - HERAB: 0.21 χ_c + 0.07 ψ'
 Faccioli, Hard Probes 06
- Theorists still working on temperatures...
 - Mócsy melts J/ ψ @ Tc
 - hep-ph/0704.2183
 - Umeda melts χ_c > 1.4 Tc
 - hep-lat/0701005

See Ágnes Mócsy's talk...

nucl-ex/sequential melting

2007, July 16th

- No precise scaling! (blame it on CNM@RHIC)
- S = (25±12)% @ y=1.7

 \rightarrow direct J/ ψ do melt !

- Why not/less @ y~0 ?
- $R_{AA}(y\sim 0) > R_{AA}(y\sim 1.7)$ ruling out all densityinduced suppression effects?

Density threshold ? Yes ?

- Onset curves fit the midrapidity data...
 - Chaudhury, nucl-th/0610031
 - Gunji et al, hep-ph/0703061 (after CNM subtraction)

Density threshold ? No !

- Onset curves fit the midrapidity data...
 - Chaudhury, nucl-th/0610031
 - Gunji et al, hep-ph/0703061 (after CNM subtraction)
- So do smooth curves !
 - Nagle nucl-ex/0705.1712
- Density threshold @ y=0 is incompatible with SPS onset or larger suppression @ y=1.7
 - Linnyk & al, nucl-th/0705.4443

See Olena Linnyk's talk...

RAA

- Various coalescence / recombination approaches...
- Better match to data
 - (look in particular Bratkovskaya's)
- Depend a lot on poorly known cc reference
- But can accommodate:
 - $R_{AA}(y=0) > R_{AA}(y=1.7)$
 - Density-induced <u>enhancement</u> mechanism...
 - $\langle p_T^2 \rangle$ flatness

R. Rapp et al.PRL 92, 212301 (2004) R. Thews et al, Eur. Phys. J C43, 97 (2005) Yan, Zhuang, Xu, PRL97, 232301 (2006) Bratkovskaya et al., PRC 69, 054903 (2004) A. Andronic et al., NPA789, 334 (2007)

Unaccounted CNM?

son

- Strong initial states effect ala color glass condensate ??
 - But they have to violate rapidity symmetrisation $R_{AA}(|y|) = R_{dA}(-y) \times R_{dA}(+y)$
 - (otherwise taken into account in CNM extrapolation) cha
- Could this + sequential melting produce $R_{AA}(y\sim 0)$ and $R_{AA}(y \sim 1.7)$?
- Double ratio should drop...
- A possibility...

Two <u>qualitative</u> possible scenarios @ RHIC

- 1. Large melting + some regeneration
- 2. Initial effects (CGC) + melting (of ψ' , χ_c ?)
 - Need better handle of CNM (Run8 dAu @ RHIC)
 - Need better open charm measurements (Run9+)
 - Smoking gun would have been a J/ψ rise...
 - Wait for LHC...
 - $J/\psi v_2$ could bring more information
 - Finished run7 should allow to measure \rightarrow
 - Beware : these are fake points !

All this, assumes deconfinment !

2007, July 16th

- Much more than what I discussed...
- Should help constraint the models...

Back-up slides

Sequential melting?

- Before QM06, it was conceivable that only the excited states melt $J/\psi \sim 0.6J/\psi + 0.3\chi_c + 0.1\psi'$ (with ~10% uncertainty)
- Now, survival = $(25\pm12)\%$ \rightarrow direct J/ ψ do melt @y~1.7?
- Why not/less @y~0 ?
- Isn't R_{AA}(y~0) > R_{AA}(y~1.7)
 ruling out all "density"
 effects ?

Quick look to open charm

• Through semileptonic decays (D \rightarrow e)

Veterans/newbies balance

- Detailed shape is not easy to get!
- Experimental J/ψ keep falling down...

0

100

300

35/29

200

N_{part}

Heavy flavour workshop

• At midrapidity, less <u>subjective</u> "onset" like shape...

Nuclear absorption only

- Compute L with Glauber model
- Fit exp($-\sigma_{abs} \rho_0 L$)
- Results are different wrt KKS numbers

Rapidity	KKS fit [4]	My fit
y = -1.7	$-0.1\pm0.2~\mathrm{mb}$	$0.3\pm1.1~\rm{mb}$
y = 0	$1.2\pm0.4~\rm{mb}$	$2.4\pm1.4~\mathrm{mb}$
y = 1.8	$3.1\pm0.2~\rm{mb}$	$4.5\pm0.8~\mathrm{mb}$

TAB. 1 – σ_{diss} values from KKS and my analysis.

KKS, PLB637(2006)75

• From HERA-B (pA $\int s=41.6 \text{ GeV}$)

Rescaling survival probabilities...

Quarkonia from SPS to RHIC - raphael@in2p3.fr

Cold nuclear matter effects ?

A real puzzle ! Especially when one goes to low x_2 , high $x_{F...}$

Quarkonia from SPS to RHIC - raphael@in2p3.fr

R_{dAu} vs rapidity @ RHIC

Data favours

- (weak) shadowing
 Eskola, Kolhinen, Salgado
 prescription matches better
- (weak) absorption
 σ_{abs} ~ 1 to 3 mb !
 (4.18 ± 0.35 mb @SPS)
- But with limited statistics difficult to disentangle nuclear effects !

PHENIX, PRL96 (2006) 012304 Klein,Vogt, PRL91 (2003) 142301 Kopeliovich, NPA696 (2001) 669

Tuchin & Kharzeev

- Hard probes 2004
 - hep-ph/0504133
- Coherent production of charm (open or closed)
 - (y<0 production time to low to make computation)
 - Shadowing from CGC computation...

PHENIX e⁺e Kopeliovich

-2.5

Tuchir

0.2

0 -5

Vogt, EKS98 3mb octet absorption Vogt, FGS 3mb octet absorption.

0

Rapidity

5

2.5

Tuchin & Kharzeev...

+ absorption for SPS & fermilab

