Latest J/ψ results from

Raphaël Granier de Cassagnac LLR - École polytechnique / IN2P3

Tsinghua university, November 22nd, 2006

Outline

2/23

1. The facts, and only the facts

- (nucl-ex/0611020)
- 2. A word of caution
 - Cold nuclear matter is not under control

3. Comparison with multiple models...

Stolen materials from A.Bickley, P.Braun-Munzinger, A.Glenn, T.Gunji, M.Leitch, E.Scomparin, P.Zhuang, RGdC @ QM06

The facts (nucl-ex/0611020)

<mark>∽0)</mark> ~ R_{AuAu} (SPS) R_{AuAu} (

- Lower rapidity R_{AA} look surprisingly similar, while there are obvious differences:
 - Cold nuclear matter effects (x_{Bjorken},...)
 - Energy density

- (better handling of backgrounds and new pp reference)
- At midrapidity, less <u>subjective</u> "onset" like shape...

Heavy flavour workshop in Beijing

Latest J/psi from phenix - raphael@in2p3.fr

- No dependence of $\langle p_T^2 \rangle$
 - Maybe a modest rise at forward rapidity.

- Note that PHENIX discard an earlier <p_T²> at forward rapidity in p+p:
 - $2.51 \pm 0.20 \, (GeV/c)^2$

First, beware of cold nuclear matter (CNM) effects !

- (shadowing+absorption by Vogt and dA-driven Glauber by RGdC)
- Clear anomalous suppression (stronger @ y~1.7)

Heavy flavour workshop in Beijing

R_{AA} / CNM @ RHIC

- First RAA/CNM extraction including (proper) error propagation
- Boxes are correlated errors
 from AuAu & <u>dominant</u> CNM
- <u>Important</u>: missing overall global <u>relative</u> uncertainty
 - 30% @ y ~ 1.7 / 35% @ y ~ 0
 - Due to different pp references that don't cancel in R_{dA} and R_{AA}
 R_{AA}(|y|) / R_{dA}(-y) × R_{dA}(+y)

 J/ψ survival beyond CNM

Heavy flavour workshop in Beijing

Quick comparison to SPS

- At mid-rapidity, the amount of surviving J/ψ @ RHIC is compatible with SPS (~60%) but depends a lot on CNM (and pp references)...
- At forward rapidity, RHIC anomalous suppression is much stronger !

Then... What's going on with the anomalous suppression?

"NA50 only" effects

Regeneration?

- Various coalescence / recombination approaches...
- Better match
 - (look in particular Bratkovskaya's)
- Depend a lot on poorly known cc reference
- But can accommodate
 - rapidity narrowing
 - <p_2> flatness

R. Rapp et al.PRL 92, 212301 (2004) R. Thews et al, Eur. Phys. J C43, 97 (2005) Yan, Zhuang, Xu, nucl-th/0608010 Bratkovskaya et al., PRC 69, 054903 (2004) A. Andronic et al., nucl-th/0611023

Sequential melting?

- Before QM06, it was conceivable that only the excited states melt $J/\psi \sim 0.6J/\psi + 0.3\chi_c + 0.1\psi'$ (with ~10% uncertainty)
- Now, survival = $(25\pm12)\%$ \rightarrow direct J/ ψ do melt @y~1.7 ?
- Why not/less @y~0 ?
- Isn't R_{AA}(y~0) > R_{AA}(y~1.7) ruling out all "density" effects ?

18/23

Sequential melting?

- Before QM06, it was conceivable that only the excited states melt $J/\psi \sim 0.6J/\psi + 0.3\chi_c + 0.1\psi'$ (with ~10% uncertainty)
- Now, survival = $(25\pm12)\%$ \rightarrow direct J/ ψ melt @y=1.7
- Why not/less at y=0?
- Isn't R_{AA}(y~0) > R_{AA}(y~1.7) ruling out all "density" effects ?

Latest J/psi from phenix - raphael@in2p3.fr

Density threshold?

- The shape of the preliminary data probably motivated a threshold approach
 - New data show little threshold (only the 4th point is high)
 - It worked only for AuAu @ y=0 (and not CuCu @ y=0 acc. to author)
 - What about y~1.7?

 Again, isn't R_{AA}(y~0) > R_{AA}(y~1.7) ruling out all "density" effects ?

Heavy flavour workshop in Beijing

21/23

Conclusions

- Two <u>qualitative</u> possible scenarios
 - 1. Large melting + some regeneration
 - 2. Initial effects (CGC) + melting (of ψ' , χ_c ?)
 - Need better handle of CNM
 - Need better open charm measurements !
 - Smoking gun would have been a J/ψ rise...^{*}
 - v₂ could become the smoking gun
 - (maybe run7 with 4 x run4 and reaction plane detector)

Data is young, new ideas may arise...

Should help constraint the models...

Back-up slides

Heavy flavour workshop in Beijing

Latest J/psi from phenix - raphael@in2p3.fr 25/23

Heavy flavour workshop in Beijing

Latest J/psi from phenix - raphael@in2p3.fr 26/23

Cold nuclear matter @ RHIC

- First centrality dependence in dA (or pA) of J/ψ production !
- Reproduced by Ramona Vogt
 - Black lines: EKS98 shadowing + σ_{abs} = 0 to 3 mb
 - Colored lines: FGS shadowing + σ_{abs} = 3 mb
- Favoring moderate shadowing
 + moderate absorption...

PHENIX, PRL96 (2006) 012304 Klein,Vogt, PRL91 (2003) 142301

What is on the market? 1. Model of nuclear absorption + inhomogeneous (anti)shadowing (Ramona Vogt, nucl-th/0507027)

- 2. exp -[$(\sigma_{diss}(y) + \sigma_{diss}(-y)) \rho_0 L$]
 - (Karsch, Kharzeev & Satz PLB637(2006)75)
 - σ_{diss} from fits on dA data \rightarrow
 - (unrealistic error bars)
 - But shadowing doesn't go like L...

R_{dAu}

1.2

1.0

Y=-1.7

R_{dA} vs impact parameter b

- Re-plot PHENIX R_{dA} vs impact ٠ $\mathsf{R}_{\mathsf{d}\mathsf{A}}$ parameter b from Glauber model
- Phenomenological fit to $R_{dA}(b) \rightarrow$ •
- Cut off RdA=1 at high b •
 - Physically expected

1800

1600 1400

1200

1000E

800E

600

400

200

OK for an upper bound of CNM

Plugged in Glauber model

- Glauber provides, for a given A+A collision at b_{AA} , a set of N+N collisions occurring at b_1^i and b_2^i .
- One minimal assumption is rapidity factorization: R_{AA}(|y|,b_{AA}) =

 $\Sigma_{collisions} \left[\begin{array}{c} \mathsf{R}_{dA} \left(-y, b_{1}^{i} \right) \times \left(\mathsf{R}_{dA} \left(+y, b_{2}^{i} \right) \right) \right] / \left(\mathsf{N}_{coll} \right) \right]$

Works (at least) for absorption & shadowing since production

~ pdf1 x pdf2 x exp - $\rho\sigma(L_1+L_2)$

Deuteron \rightarrow

- In PHENIX, J/ψ mostly produced by gluon fusion, and thus sensitive to gluon pdf
- Three rapidity ranges probe different momentum fraction of Au partons
 - South (y < -1.2) : large x_2 (in gold) ~ 0.090
 - Central (y ~ 0) : intermediate $x_2 \sim 0.020$
 - North (y > 1.2) : small x₂ (in gold) ~ 0.003

An example of gluon shadowing prediction

Heavy flavour workshop in Beijing

 \leftarrow Gold DETECTOR ELECTROMAGNET CALORIMETER

Latest J/psi from phenix - raphael@in2p3.fr 31/23

Cold nuclear matter effects ?

- J/ψ (or $c\overline{c}$) absorption
- (Anti) shadowing (gluon saturation, CGC...)
- Energy loss of initial parton
- p_T broadening (Cronin effect)
- Complications from feeddown ψ' & χ_c ?
- Something else ?

