A d+Au data-driven prediction of cold nuclear matter (CNM) effects on  $J/\psi$  production in Au+Au collisions at RHIC

#### Raphaël Granier de Cassagnac LLR – École polytechnique / IN2P3

#### (thanks to Jean Gosset & Klaus Reygers)





#### Motivation & outline

- Subtracting cold nuclear matter (CNM) effects is crucial to interpret J/ψ suppression
  - How is it done @ SPS ?
  - How is it done @ RHIC ?
  - A new method for RHIC ...

#### $J/\psi$ nuclear modification factor



#### Cold nuclear matter @ SPS

Normal nuclear absorption պեσ**(J**/Ψ)/σ(DY 2.9-4. alone does a splendid job 40 in describing pA, SU, and 30 peripheral PbPb & InIn... - (including preliminary pA @ 158 GeV from NA60) 20  $exp(-\sigma_{abs} \rho_0 L)$ - (or in Glauber model) -  $\sigma_{abs} = 4,18 \pm 0,35 \text{ mb}$ 10 -9 L nuclear thickness:

 $J/\psi$  / DY rescaled to 158 GeV



QM2006, November 19th

Cold nuclear matter toy model - raphael@in2p3.fr

## (Anti) shadowing @ SPS?

- Do we fully understand
   CNM @ SPS ?
- Not these surprising rapidity distribution asymmetries  $\rightarrow$ 
  - Variation of ~30 to ~50% in one unit of rapidity !
  - Is it (anti)shadowing?
  - Not taken into account in CNM extrapolation...

NA50, CERN-PH-EP/2006-018, to appear in Eur. Phys. J. C.



QM2006, November 19th

Cold nuclear matter toy model - raphael@in2p3.fr

4/16

#### Cold nuclear matter @ RHIC







- First centrality dependence in dA (or pA) of J/ψ production !
- Reproduced by Ramona Vogt
  - Black lines: EKS98 shadowing +  $\sigma_{abs}$  = 0 to 3 mb
  - Colored lines: FGS shadowing +  $\sigma_{abs}$  = 3 mb
- Favoring moderate shadowing
  + moderate absorption...

PHENIX, PRL96 (2006) 012304 Klein,Vogt, PRL91 (2003) 142301

QM2006, November 19th

## From dA to AA @ RHIC

What is on the market ? 1. Model of nuclear absorption + inhomogeneous (anti)shadowing (Ramona Vogt, nucl-th/0507027)

- 2. exp -[  $(\sigma_{diss}(y) + \sigma_{diss}(-y)) \rho_0 L$  ]
  - (Karsch, Kharzeev & Satz
     PLB637(2006)75)
  - $\sigma_{diss}$  from fits on dA data  $\rightarrow$
  - (unrealistic error bars)
  - But shadowing doesn't go like L...







## 3. Another approach...



#### • Goal

- Predict  $R_{AA}$  from  $R_{dA}$
- Concerns
  - Stay as much as possible data-driven
  - Take full advantage
     of dAu centrality dependence...



#### © Uderzo & Goscinny, Asterix chez les helvètes

QM2006, November 19th

Cold nuclear matter toy model - raphael@in2p3.fr

#### $R_{dA}$ vs impact parameter b



- Re-plot PHENIX R<sub>dA</sub> vs impact ٠ parameter b from Glauber model
- Phenomenological fit to  $R_{dA}(b) \rightarrow$ •
- Cut off RdA=1 at high b •
  - Physically expected

1800

1600 1400

1200

1000E

800E

600

**400** 

200

OK for an upper bound of CNM





# Plugged in Glauber model

- Glauber provides, for a given A+A collision at  $b_{AA}$ , a set of N+N collisions occurring at  $b_1^i$  and  $b_2^i$ .
- One minimal assumption is rapidity factorization: R<sub>AA</sub>(|y|,b<sub>AA</sub>) =

 $\Sigma_{collisions} \left[ \begin{array}{c} \mathsf{R}_{dA} \left( -y, b_{1}^{i} \right) \times \left( \mathsf{R}_{dA} \left( +y, b_{2}^{i} \right) \right) \right] / \left( \mathsf{N}_{coll} \right) \right]$ 

Works (at least) for absorption & shadowing since production

~ pdf1 x pdf2 x exp - $\rho\sigma(L_1+L_2)$ 





## Propagating dA error



# 1. Varying the fit parameters

- Uncorrelated
- Within ±1σ

## to propagate the statistic + systematic dAu

uncertainties throughout the Glauber computation





#### 2. Varying line shapes $\rightarrow$

- 3 to 5% @ y ~ 1.7
- 3 to 12% @ y ~ 0

(asymmetric and depending on centrality)

- 3. Varying Glauber parameters (pp total cross section, Woods Saxon parameters,...)
  - 2%@y~1.7

- 4%@y~0





- Black curves reflect stat. and syst. errors from dAu
- Much less constrained @ y~0 because:
  - $R_{dA}(0)$  measurements are less precise than  $R_{dA}(-1.7)$  and  $R_{dA}(+1.7)$
  - and squared while computing  $RdA(-y) \times RdA(+y)$
- Then, take the average in <u>experimental</u> centrality classes



• Consistent with Vogt's prediction (EKS shadowing + 1 or 3 mb  $\sigma_{abs}$ ) • Prediction @ y~1.7 is much more powerful than @ y~0

# R<sub>AA</sub> / CNM @ RHIC

- First RAA/CNM extraction including (proper) error propagation
- Boxes are correlated errors
   from AuAu & <u>dominant</u> CNM
- <u>Important</u>: missing overall global <u>relative</u> uncertainty
  - 30% @ y ~ 1.7 / 35% @ y ~ 0
  - Due to different pp references that don't cancel in R<sub>dA</sub> and R<sub>AA</sub>
     R<sub>AA</sub>(|y|) / R<sub>dA</sub>(-y) × R<sub>dA</sub>(+y)

 $J/\psi$  survival beyond CNM



QM2006, November 19th

# Quick comparison to SPS

- At mid-rapidity, the amount of surviving J/ψ @ RHIC is compatible with SPS (~60%) but depends a lot on CNM (and pp references)...
- At forward rapidity, RHIC anomalous suppression is much stronger !







- Pro's
  - Very little model dependence (apart from Glauber)
    - (no  $\sigma_{abs}$  , no shadowing scheme, y=0 & 1.7 independence,...)
  - Proper error propagation from dAu (and pp)
  - Proper centrality selection (experimental classes)  $\rightarrow J/\psi$  survival of 25±12% @ y=1.7 & 44±23% @ y=0
- Con's
  - Not applicable without p+A (or d+A) centrality dependence at <u>same energy</u> and at <u>both</u> +y and -y wrt A+A collisions (thus not at SPS or LHC)
  - Limited by dAu statistic ! We need more !
    - Especially @ y~0 (and dCu to apply this to CuCu)

# Back-up slides

# **Collision** display

- Disappearance probability
  - No assumption on production point
  - Weighted by Woods
     Saxon



Disappearance probability





# Nuclear absorption only

- Compute L with Glauber model
- Fit exp( $-\sigma_{abs} \rho_0 L$ )
- Results are different wrt KKS numbers

| Rapidity | KKS fit [4]              | My fit                   |
|----------|--------------------------|--------------------------|
| y = -1.7 | $-0.1\pm0.2~\mathrm{mb}$ | $0.3 \pm 1.1 \text{ mb}$ |
| y = 0    | $1.2\pm0.4~\rm{mb}$      | $2.4 \pm 1.4 \text{ mb}$ |
| y = 1.8  | $3.1\pm0.2~\rm{mb}$      | $4.5 \pm 0.8 \text{ mb}$ |



#### KKS, PLB637(2006)75

QM2006, November 19th





## Sampling local impact parameter in AuAu



# Varying Glauber parameters



21/16

# Varying the line shape





#### Deuteron $\rightarrow$

- In PHENIX,  $J/\psi$  mostly produced by gluon fusion, and thus sensitive to gluon pdf
- Three rapidity ranges probe different momentum fraction of Au partons
  - South (y < -1.2) : large  $x_2$  (in gold) ~ 0.090
  - Central (y ~ 0) : intermediate  $x_2 \sim 0.020$
  - North (y > 1.2) : small x<sub>2</sub> (in gold) ~ 0.003

#### An example of gluon shadowing prediction

QM2006, November 19th







Cold nuclear matter toy model - raphael@in2p3.fr

## Cold nuclear matter effects ?

- $J/\psi$  (or  $c\overline{c}$ ) absorption
- (Anti) shadowing (gluon saturation, CGC...)
- Energy loss of initial parton
- $p_T$  broadening (Cronin effect)
- Complications from feeddown  $\psi'$  &  $\chi_c$  ?
- Something else ?



24/16



QM2006, November 19th

Cold nuclear matter toy model - raphael@in2p3.fr 25

25/16

