Quarkonium suppression from SPS to RHIC (and from pA to AA)

Raphaël Granier de Cassagnac LLR – École polytechnique / IN2P3

Hard Probes 2006 Asilomar, California, June 13th

In 1986, Matsui & Satz (happy birthday Helmut) predicted an "unambiguous" signature of QGP, that was immediately (1992) seen by NA38 in SU collisions...

Matsui & Satz, PLB178 (1986) 416

NA38, NPA544 (1992) 209

0.5

°O−Cu

 ε (GeV/fm³)

32S-U 87

³⁷S-U 90

2

First, beware of cold nuclear matter effects !

Cold nuclear matter effects ?

- J/ψ (or $c\overline{c}$) absorption
- (Anti) shadowing (gluon saturation, CGC...)
- Energy loss of initial parton
- p_T broadening (Cronin effect)
- Complications from feeddown $\psi' \& \chi_c$?
- Something else ?

@SPS: many pA ! High statistics ! But small kinematics $(-0.1 < x_F < 0.1)$ - Nuclear absorption does a splendid job @FNAL: less pA... High statistics ! Large rapidity (x_F) coverage... No AA... - Many cold nuclear effects needed ! @RHIC: only dAu, low statistics, but rapidity (-2.2 to 2.2) and <u>centrality</u> dependence

- Absorption + (anti)shadowing

10

Cold nuclear matter extrapolations always rely on some <u>models</u> and pA <u>data</u> with various balance between the two...

Ose SPS, plug measured nuclear absorption either as exp(-ρ σ L) or in Glauber model

- Is there room for (anti)shadowing?
- Is the pA absorption applicable to AA?
 - ψ absorption differs ! (7.9 ± 0.6 mb)
 - And feed down ratios may change in AA !
- Not taken care of, but again, absorption does a splendid job from pp to peripheral Pb-Pb

R_{dAu} vs N_{coll} @ RHIC

Low x₂ ~ 0.003

First centrality dependence in dA (or pA) measurement

- Colored lines:
 - FGS shadowing for 3 mb
- Black lines:
 - EKS98 shadowing
 - + σ_{abs} = 0 to 3 mb
- Together with rapidity shape, this favours EKS98 + moderate absorption...

R_{dAu} vs rapidity @ RHIC

Data favours

- (weak) shadowing
 Eskola, Kolhinen, Salgado
 prescription matches better
- (weak) absorption
 σ_{abs} ~ 1 to 3 mb !
 (4.18 ± 0.35 mb @SPS)
- But with limited statistics difficult to disentangle nuclear effects !

PHENIX, PRL96 (2006) 012304 Klein,Vogt, PRL91 (2003) 142301 Kopeliovich, NPA696 (2001) 669

- A model of nuclear absorption + (anti)shadowing (Ramona Vogt, nucl-th/0507027)
- 2. $exp (\sigma_{diss}(y) + \sigma_{diss}(-y))n_0L$
 - (Karsch, Kharzeev & Satz PLB637(2006)75)
 - σ_{diss} from fits on dA data \rightarrow
 - But shadowing doesn't go like L...
- 3. My own toy model
 - (next 3 slides)

HP2006, June 13th Quarkonium at SPS & RHIC - raphael@in2p3.fr

1.0 0.8 1.2 Y=01.0 0.8 1.2 Y = 1.810 08 0.6 Ncoll $\sigma_{\rm diss}(y=1.8) = 3.1 \pm 0.2 \text{ mb}$ $\sigma_{\rm diss}(y=0) = 1.2 \pm 0.4 {\rm ~mb}$

Y=-1.7

R_{dAu}

1.2

 $\sigma_{\rm diss}(y = -1.7) = -0.1 \pm 0.2 \text{ mb}$

KKS, PLB637(2006)75

My own toy model (1/3)

- Data driven, as much as possible...
- Phenomenological fit to RdA(b) \rightarrow
- Plug this in AuAu Glauber: $R_{AA}(y,b_{AA}) = \Sigma_{collisions}$ [$R_{dA}(-y,b_1) \times R_{dA}(y,b_2)$]
- Works for absorption & shadowing since: production ~ pdf1 x pdf2 x exp -nσ(L₁+L₂)

- Bands are statistical and systematic errors from dAu
- No systematics from the method itself (work in progress)
- Average on AuAu centrality classes to compare to data...

Comparison to AuAu data and Ramona's model...

Then... What's going on with the anomalous suppression?

What's going on @SPS?

- Several models could fit NA50
 - Plasma (either thermal or percolative)
 - Comovers (hadronic or partonic ?)
- Now NA60...
 - Difficult to reproduce...

Roberta Arnaldi, QM05 + new analysis, this meeting

HP2006, June 13th

What's going on @ RHIC?

Normal

suppression

Uncertainty

Anomalous

suppression ≥ 1/3

400

Shadowing + nuclear absorption (crucial !)

HP2006, June 13th

"NA50 only" effects

19/31

400

1st. Recombination ?

- A variety of recombination & coalescence models can accommodate the suppression...
- "But early results suggest some competing mechanism, such as reformation of J/ψ particles, <u>may</u> occur at these densities. "Riordan & Zajc, Scientific American

To know more, look at y, $p_{\mathsf{T}}...$

Grandchamp et al, PRL92 (2004) 212301 Bratkoskaya et al, PRC69 (2004) 054903 Andronic et al, PLB571 (2003) 36 Thews & Mangano, PRC73 (2006) 014904c + Private communications +

y shape (vs recombination)

Cu+Cu Recombination emphasizes10⁻³ PHENIX preliminary Au+Au 0% - 20% Au+Au 20% - 40% quark y-distribution Au+Au 40% - 93% D+D Quark (open charm) 200 10⁻⁴ y-distribution unknown ** No significant change in rapidity in data... 10⁻⁵ ± y Ť ÷. Recombined only cc diagonal pairs Formation from all pairs 10⁻⁶ 0.4 . Ŧ Ŧ $\left[N^{-l} \ dN/dy\right]_{J/\psi}$ Ŧ Ŧ 0.2 10⁻⁷ -2 -1 2 0 ← Thews & Mangano, PRC73 (2006) 014904c 0

HP2006, June 13th Quarkonium at SPS & RHIC - raphael@in2p3.fr

Cronin versus recombination

- 1. At forward rapidity (closed symbols)
 - from pp & dA: $\langle p_T^2 \rangle = 2.51 + 0.32 L$ (L <-> N_{coll} conversion) No sign of recombination !
- 2. At mid rapidity (open symbols)
 - Negligible Cronin !?...
 - Need better pp !

HP2006, June 13th

2^{nd} . Hydro + J/ ψ transport

- One detailed QGP hydro + J/ψ transport (Zhu et al)
- $g + J/\psi \rightarrow c + \overline{c}$
- First published without cold nuclear effects, but here :
- + Nuclear absorption (1 or 3 mb)
- + Cronin effect from dAu <p^T₂> ok (as on previous slide)
- Model should be valid for y=0
 - But match y=1.7
 - (and central y=0)

Zhu, Zhuang, Xu, PLB607 (2005) 107 + private communication

3rd (simple) explanation

- Amount of anomalous suppression depends on cold nuclear effects amplitude
- But could be as low as 30 to 40%
- Compatible to feed-down ratio - $J/\psi \sim 0.6 J/\psi + 0.3 \chi_c + 0.1 \psi'$
- Recent lattice $T_d^{\psi} \sim 1.5 2.5 T_c$ - $\epsilon \times (T_d^{J/\psi} \sim 2T_c)^4 = 2 \epsilon_c$
- Wait for LHC to melt $J/\psi\,?$

state	${\rm J}/\psi(1S)$	$\chi_c(1\mathbf{P})$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

We may still be here

• ε_d^{J/ψ} ~ 32 ε_c !

Datta & al, hep-lat/0409147 Alberico & al, hep-ph/0507084 Wong, hep-ph/0408020 ←Satz, hep-ph/0512217 + Mocsy, Umeda, Asakawa in this meeting

- Sequential melting scenario
 - J/ψ survival only
 - Excited states melting from ψ' suppression pattern @ SPS
- Be careful when showing this!⁶
 - NA60 and PHENIX are PRELMINARY...
 - No systematic uncertainties on PHENIX points
 - (see Abigail Bickley's)
 - No uncertainties from cold nuclear matter effects
- However, it does a good job and sequential melting clearly is a <u>possibility</u> !...

Now, can we plot everybody together ?

x-axis : energy density ?...

- Should be <u>the</u> right variable...
- But we really don't know how to compare RHIC & SPS !
 - τ_0 > 1 fm/c @ SPS (nuclei take 1.6 fm/c to cross each other)
 - $\tau_0 < 1 \text{ fm/c} @ \text{RHIC}$ (formation time ~ 0.35 ? thermalization ~ 0.6 to 1 ?)

That's it for today...

(global SPS uncertainty not included)

NA60 new points from Roberta Arnaldi

HP2006, June 13th

For now, no model to "explain" NA60:

- But maybe sequential melting?
- For now, 3 models to "explain" RHIC: 1st Recombination ?
 - But no sign of y or p_T^2 modifications...
- $J/\psi \alpha (N_{cc})^2$ (but how much is N_{cc} ?) 2nd J/ψ detailed transport in hydro QGP 3rd Sequential melting ?
 - J/ψ may still survive @ RHIC...

(this three models assume a QGP...)

The show must go on...

What is coming from SPS ?

- J/ψ flow (Cf. Francesco Prino tomorrow)
- ψ' from InIn ? X_c from pA ?
- J/ψ pA @ 158 AĞeV

What is coming from RHIC?

- Final AA analysis
 - A bit more data & more bins !
 - With a better pp ref (run 5)
 - With J/ ψ elliptic flow ? \rightarrow
- First look at $\psi',\,\chi_c$ and upsilons
 - Going on with run 5 pp...
- STAR entering the game (Cf. Pibero Djawotho)
- What is needed at RHIC !
 - More dA ! Better handle cold nuclear effects...
 - More AA ! With open charm, ψ' ,...
 - Better open charm measurements (SiVTX upgrades \rightarrow

And then, we'll have another story at the LHC ! HP2006, June 13th Quarkonium at SPS & RHIC - raphael@in2p3.fr

Back-up slides

Some more HERA-B points...

Hugo Pereira da Costa, for PHENIX, QM05, nucl-ex/0510051

- In PHENIX, J/ψ mostly produced by gluon fusion, and thus sensitive to gluon pdf
- Three rapidity ranges probe different momentum fraction of Au partons
 - South (y < -1.2): large x_2 (in gold) ~ 0.090
 - Central (y ~ 0) : intermediate x_2 ~ 0.020
 - North (y > 1.2) : small x_2 (in gold) ~ 0.003

An example of gluon shadowing prediction

 \leftarrow Gold

DETECTOR

Quick look to open charm

• Through semileptonic decays (D \rightarrow e)

Consistent suppression amplitude observed but cold nuclear effects may be different

HP2006, June 13th Quarkonium at SPS & RHIC - raphael@in2p3.fr

HP2006, June 13th

recombination/suppression

HP2006, June 13th

Cronin effect

Scattering of initial gluons of nucleon before ccbar formation random walk : $\langle p_t^2 \rangle_{AA} = \langle p_t^2 \rangle_{pp} + \rho \sigma \Delta (\langle p_t^2 \rangle) L_{AA}$

v's =17.3 GeV : NA50/60 Pb+Pb, In+In v's = 19.4 GeV : NA3 p+p, NA38 p+Cu, p+U,O+U, S+U v's = 27.4 GeV : NA50 p+Be, p+Al, p+Cu, p+W

√s = 29.1 GeV :NA51 p+p, p+d, NA50 p+Al, p+W

√s = 38.8 GeV : E866/789/771

ρ nuclear density, σ elastic gluon-nucleon scattering cross section, $\Delta(\langle p_t^2 \rangle)$ kick given by each scattering and paverage thickness of nuclear matter_{3/31}

Cronin effect

HP2006, June 13th

Quarkonium at SPS & RHIC - raphael@in2p3.fr

44/31

Cronin effect

Cronin : $< p_t^2 >_{AA} = < p_t^2 >_{pp} + \rho \sigma \Delta (< p_t^2 >) L_{AA}$

Extrapolation curve from PHENIX J/ ψ results in p+p and d+Au

- At forward rapidity, <pt²> variation compatible with this Cronin extrapolation
- At mid rapidity, measurements in p+p and d+Au indicate a weak Cronin effect

(curves to be compared with AA @ 1.2<|y|<2.2)

Rapidity width

No noticeable change in rapidity width

HP2006, June 13th

Quarkonium at SPS & RHIC - raphael@in2p3.fr

VN Tram thesis

More on transport model...

- 2+1D hydro
- Boltzman-type transport
- Local equilibrium
 - (0.8 & 0.6 fm/c)
 - Normal to anomalous
- $T_c = 165 \text{ MeV}$
- $T_{fo} = 60 \text{ MeV}$
- $g+\Psi \rightarrow cc$
- 40% feeddown
- No in-medium mod ^{FI}
- No absorption
 @RHIC (here)

FIG. 1: The J/ψ suppression and $\left< p_t^2 \right>$ as functions of centrality at SPS energy

HP2006, June 13th

First upsilons...

• Run 5 pp (3 pb⁻¹)

Hie Wei, Quark Matter 2005

South BBC Charge

BBC charge versus ZDC energy

Dielectron pp and dA

Total cross section

 σ (pp → J/ψ) 2.61 ± 0.20 ± 0.26 μb

- Error from fit (incl. syst and stat)
- Error on absolute normalization

PHENIX, PRL96 (2006) 012304

p+p perspectives

NA50 versus NA60 (QM05)

α versus X compared to lower \sqrt{s}

- Not universal versus X_2 : shadowing is not the whole story.
- Same versus X_F for diff \sqrt{s} . Incident parton energy loss ? (high X_d = high X_F)
- Energy loss expected to be weak at RHIC energy.

HP2006, June 13th

Naive picture

Less absorption

HP2006, June 13th

Tuchin & Kharzeev

- Hard probes 2004
 <u>hep-ph/0504133</u>
- Coherent production of charm (open or closed)
 - (y<0 production time to low to make computation)
 - Shadowing from CGC computation...

Tuchin & Kharzeev...

+ absorption for SPS & fermilab

HP2006, June 13th

Quarkonium at SPS & RHIC - raphael@in2p3.fr

63/31

... gold+gold extrapolation ...

