

(Last results from PHENIX)

- 1. RHIC
- 2. Run 1 results
- 3. PHENIX muon arms
- 4. Run 2 status

5. Future possibilities

RHIC

Relativistic Heavy Ion Collider
2.4 miles circumference

- Proton + Proton (polarized)
 - 2 x 10 ³² cm⁻² s⁻¹
 - 500 GeV
- Gold + Gold
 - 2 x 10²⁶ cm⁻² s⁻¹ in between

200 GeV/nucleon

Species

4 experiments

4 experiments

Relativistic Heavy Ion Collider

April 5, 2002

Identified particle acceptances

Relativistic Heavy Ion Collider

April 5, 2002

Gold-Gold Luminosity

April 5, 2002

- > Selection of results from run 1
- First Gold-Gold run
- Int. Luminosity ~ 8 µb⁻¹
- Energy = 130 GeV / nucleon
- > 20 preprints, others in preparation
- No dimuons, PHENIX not yet equipped

First results from run 2 Multiplicities from Brahms & Phobos

Selection of first results

Initial conditions

- · Energy density
- Charge multiplicity
- Baryonic transparency

First moments

Jet quenching? Elliptic flow

Energy density

 $dE_T/dy)_{y=0}$ Bjorken energy density (2% most central events) $4,6 \text{ GeV/fm}^3$ @ RHIC $2,9 \text{ GeV/fm}^3$ @ SPS + 60 %

PH

FN

dNch/dn @ η =0 for 56, 130 and 200 GeV (5% most central)

Baryonic transparency

Baryonic density $\rightarrow 0$

Probed through antiparticule/particule ratio

April 5, 2002

Antiproton/proton

April 5, 2002

K⁺/K⁻ seen by STAR

RHIC Relativistic Heavy Ion Collider

April 5, 2002

Initial conditions @ RHIC

First moments @ RHIC

- Jet Quenching?
 - Partons are expected to
 - lose energy traversing a quark gluon plasma
 - Leading particles (high p_T)
 - should be suppressed

Jet Quenching ???

PHXENI

Jet Quenching ???

High pT drop for - Neutral pions - Charged hadrons Consistent with parton energy loss (~0.25 GeV/fm) Need more study !!! - Test Cronin effect with p+p run - Measure gluon shadowing with p+A - Reach higher p_{T} (RUN2)

First moments : elliptic flow

Last moment : Hadronisation

Freeze-out temperature

Other results.

- Strangeness enhancement
- Two pion correlations (HBT)
- Event by event fluctuations
 - Nucl-ex/0203015 & 0203014
- Single electron / charm production
 - Nucl-ex/0202002

Others ?...

3. PHENIX

Two central spectrometers

Two forward spectrometers

Three global detectors

PHENIX muon arms

Advertising...

Phenix France provides the north arm electronics

- LPC-Clermont
- Subatech-Nantes*
- IPN-Orsay
- LLR-Palaiseau
- · CEA-Saclay
- 3 Corean labs
 joined phenix
 in 2000

(* before for photon physics)

26 3

PHENIX muon arms

- 2 Trackers = 2x3 stations
- 2 Identifiers = 2x5 planes

PH

KEN

Muon Acceptance

PH

Field & matter

- Ar:CO₂:CF₄ = 50:30:20
- Radial field
 - Bending vs Phi
 - Field integral : 0.8 T.m
- Absorption
 Steel from magnet (3.6 λ)
 Copper nosecone (↓ π,K)

PH

Three tracking stations

Octogonal shape

PH

EN

3 Tracking

Stations

Identification

Within a station

- 2 gaps in station 3
- 3 gaps in stations 1 et 2
- 1 gap = 2 cathodes + 1 anode

Raphaël Granier de Cassagnac / ALICE dimuon

Cathode plane

Anode plane

Within a gap

Read Out gap = 1cm Designed for a Noise/signal < 1 % 100 µm resolution

Resolutions

Mass resolutions

Physics capabilities

Separate φ % ρ+ω ; J/ψ % ψ' ; Y' % Y Good enough signal/background

4. Run 2 status

Relativistic Heavy Ion Collider

In Phenix

+ 15 weeks in Gold+Gold @ 200 GeV

- Designed luminosity achieved (2 weeks)
- Int. Lum. = $24 \ \mu b^{-1}$
- 170 Mevents recorded
- Commissionning the south arm
- First muons seen !
- + 5 weeks in Proton+Proton
 Luminosity = 0.15 pb⁻¹
 3.7 Bevents recorded

In the central arms

In STAR

MuTr Illumination

Few parts missing

- HV not standing humidity
- Weak cables

Being fixed for next run

MuTr/MuId Multiplicities

•MuId hits/events

PF

Station 1 multiplicity vs. Total BBC charge

•MuTr clusters

200

300

April 5, 2002

Raphaël Granier de Cassagnac / ALICE dimuon

(cm)

400

MuId backgrounds

• Update simulation : low angle particles leaking beam pipe

April 5, 2002

We are analyzing data...

- Tracker alignment
 - Field off p+p data
- Look for J/Ψ peak in p+p run
- Estimate efficiencies / acceptance with run dependent simulations

Too bad we had p+p at the end

5. Future plans

Reach a « standard » year of Gold+Gold data

April 5, 2002

Raphaël Granier de Cassagnac / ALICE dimuon

PHEN

Charmonia in Phenix

Rough estimate

× Integrated luminosity = 2 nb⁻¹ (36 weeks @ luminosity, df 50%) × Acceptance = 4.3 % + 4.5 % (South + North arms) × $B(\psi \rightarrow \mu\mu) = 6 \%$

```
x \le NN (\psi) \sim 3 \times 10^{-6} b
```

(extrapolation, to be measured)

x (197x197) 0.92

N (ψ) ~ 5 x 10⁵ / year in Gold Gold [N (ψ ') ~ 9 x 10³] if not suppressed !

Bottomia in Phenix

Rough estimate

- x Int. lum. = 2 nb^{-1}
- x Acceptance = 6 %
- × **B(Y**→μμ) ~ 2 %
- x s^{NN} (all Y) ~ 3 x 10 ⁻⁸ b

N (Y*) ~ 5000

x (197x197)^{0.92}

N(Y) ~ 1200 / Au+Au year N(Y*) ~ 400

Also screened in Cu+Cu N(Y) ~ 15000 / Cu+Cu year

Upsilon too linked to be screened Y', Y" should be suppressed (Y*) Upsilon can serve as reference

PH

FN

First results from run 2 @ QM 2002

- Higher p_T reach (jet quenching)
- First glimpse @ muons

Phenix next runs will provide exciting dimuon results

- Gold+Gold @ high luminosity $J/\Psi, \Psi'$
- p+p, d+A to set references
- Lighter ions (higher luminosity) for Y, J/Ψ , Ψ'

And then ALICE will reach another step...