Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

Ralf Averbeck

State University of New York at Stony Brook

INT/RHIC Winter Workshop, Seattle, December 13-15, 2002

Outline

- PHENIX experiment: how to measure leptons
- Run-1: $Au + Au @ \sqrt{s_{NN}} = 130 \text{ GeV}$
 - ullet single electrons from charm decays (c \to D \to e + X)
- Run-2: Au + Au and p+p @ $\sqrt{s_{NN}}$ = 200 GeV
 - single electrons refined
 - dielectron continuum
 - charmonium measurements
 - $J/\Psi \rightarrow e^+e^-$ in p+p and Au+Au
 - J/ $\Psi \rightarrow \mu^{+}\mu^{-}$ in p+p
- summary and outlook

PHENIX experiment

- **only RHIC experiment optimized for lepton measurements**
- **•**electrons: two central arms
- •muons: two forward arms
- **•**Run-1:
 - Au+Au at $\sqrt{s_{NN}} = 130 \text{ GeV}$
 - central arms partly instrumented
- •Run-2:
 - Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - p+p events at $\sqrt{s} = 200 \text{ GeV}$
 - central arms fully instrumented
 - one muon arm instrumented

Two central electron/photon/hadron spectrometers

Two forward muon spectrometers

Electron measurement in PHENIX

- high resolution tracking and momentum measurement
 - drift chamber and pad chambers
 - $|\eta| < 0.35$ and $p_T > 0.2$ GeV/c
- electron identification
 - ring imaging Cherenkov detectors and electromagnetic calorimeters

Muon measurement in PHENIX

- muon identification, tracking, momentum measurement in south muon arm
 - forward muons: $1.2 < |\eta| < 2.2$
 - $p_{TOT} > 2.0 \text{ GeV/c}$

South muon identifier (MuID)

5 gaps per arm filled with planes of transversely oriented Iarocci tubes

South muon tracker (MuTR)

3 octagonal stations of cathode strip chambers per arm

Charm measurements: why are they important?

- charm production in heavy-ion collisions
 - production mainly via gg fusion in earliest stage of collision
 - sensitive to initial gluon density
 - additional thermal production at very high temperature
 - sensitive to initial temperature
- propagation through dense (deconfined?) medium
 - energy loss by gluon radiation? \rightarrow softening of D-meson spectra?
 - sensitive to state of nuclear medium
- baseline measurement for charmonium suppression
- same arguments hold for bottom measurements
- NO data available from heavy-ion collisions (except quarkonia)

Charm measurements: why are they difficult?

ideal but very challenging

• direct reconstruction of charm decays (e.g. $D^0 \rightarrow K^-\pi^+$)

alternative but indirect

- charm semi leptonic decays contribute to single lepton and lepton pair spectra
- 1st approach at RHIC: analyze inclusive e[±] spectra

Inclusive e[±] spectra from Au+Au at 130 GeV

- how to extract the contribution from open charm decays?
- cocktail method
 - model known sources as precisely as possible
 - compare with data
- main sources contributing to the e[±] spectra
 - "photonic" sources
 - conversion of photons from hadron decays in material
 - Dalitz decays of light mesons $(\pi^0, \eta, \omega, \eta', \phi)$
 - "non-photonic" sources
 - semi leptonic decays of open charm (beauty)

Separation of non-photonic e±: cocktail method

Olight hadron cocktail input:

- • π^0 (dominant source at low p_T)
 - $-p_T$ spectra from PHENIX π^0 , π^{\pm} data
 - power law parameterization

•other hadrons

- $-\mathbf{m}_{\mathrm{T}}$ scaling: $\mathbf{p}_{\mathrm{t}} \rightarrow \sqrt{\mathbf{p}_{\mathrm{t}}^2 + \mathbf{m}_{\mathrm{h}}^2 \mathbf{m}_{\pi}^2}$
- relative normalization to π at high p_T from other measurements at SPS, FNAL, ISR, RHIC
- photon conversions
 - material known in acceptance
- **Oexcess above cocktail**
 - increasing with p_T
 - expected from charm decays

Non-photonic e[±] spectra from Au-Au at 130 GeV

- Ocompare excess e^{\pm} spectra with PYTHIA calculation of semi leptonic charm decays $(c \rightarrow e + X)$
 - tuned to fit SPS, FNAL, ISR data (√s<63 GeV)
 - for pp at 130 GeV -cross section $\sigma_{c\bar{c}} = 330 \ \mu b$
 - scale to Au+Au using the number of binary collisions
- reasonable agreementbetween data and PYTHIA

- **Ocorresponding charm cross section per binary collision from data**
 - assumption: all e[±] are from charm decays
 - fitting PYTHIA to data for $p_T > 0.8 \text{ GeV/c}$

$$\sigma_{c\bar{c}}^{0-10\%} = 380 \pm 60 \pm 200 \mu b$$

$$\sigma_{c\bar{c}}^{0-92\%} = 420 \pm 33 \pm 250 \mu b$$

• consistent with binary scaling (within large uncertainties)

Energy dependence of charm production

Photon converter in Run-2

- additional photon converter installed in parts of the 200 GeV run in PHENIX central arms
- 1.7 % X_0 brass close to beam line
- additional material increases the number of e[±] from photon conversions by a fixed factor
- ratio between Dalitz decays and photon conversions is fixed by relative branching ratios Dalitz/ $\gamma\gamma$, which is very similar for π^0 and η

- comparison of spectra with and without converter allows for complete separation of contributions from non-photonic and photonic sources
 - complementary to cocktail method
 - completely different systematics

Converter method: proof of principle

- e[±] spectra with converter: N^c
- e[±] spectra without converter: N
- if no contribution to e^{\pm} from non-photonic sources $\rightarrow N/N^c \approx const.$
- but spectra approach each other with increasing p_T
 - indication for strong non-photonic source

Non-photonic e[±] spectra from Au-Au at 200 GeV

non-photonic e[±] yield at 200 GeV

- larger than at 130 GeV
- consistent with PYTHIA, assuming binary scaling
- PYTHIA for pp at 200 GeV: $\sigma_{c\bar{c}} = 650 \mu b$
- spectral shape
 - consistent with PYTHIA prediction
- dominant uncertainties
 - at high p_T: statistical error in converter measurement
 - at low p_T: systematical error in material budget

Centrality dependence at 200 GeV

Observations from single e[±] data

- inclusive e[±] are consistent with binary scaling within the current statistical and systematical uncertainties
- a factor of ~3-4 suppression of high p_T hadrons is observed relative to binary scaling
 - no large effect observed in e[±] from charm decays
 - possibly less energy loss of charm quarks in medium due to "dead cone" effect (Y.L. Dokshitzer and D.E. Kharzeev, Phys. Lett. B519(2001)199)
- NA50 has inferred a factor of ~3 charm enhancement from dimuon measurements at SPS (NA50: Eur. Phys. J. C14(2000)443)
 - no large effect observed at RHIC
 - possible cross check: dileptons at RHIC
- next steps (work in progress):
 - charm in p+p as reference
 - complementary leptonic channels

Dielectron continuum

- why is it interesting?
 - intermediate mass region (IMR): between the ϕ and the J/ Ψ mass
 - may be dominated by charm decays at RHIC
 - another charm measurement with completely different systematics
 - low mass region (LMR): below the φ mass
 - dominated by light hadron decays
 - excess dielectron observed at SPS (NA45/CERES) and attributed to in-medium modifications of the ρ meson due to the restoration of approximate chiral symmetry
- and why it is so difficult to measure?
 - combinatorial background needs to be subtracted to extract small signal

Dielectron continuum: results

- comparison with cocktail including light hadron decays using vocus.
 - light hadron decays using vacuum masses and branching fractions
 - charm decays from PYTHIA
- integrated yield in PHENIX expectated from cocktail
 - LMR (0.3 -1.0 GeV): ~9.2 x 10⁻⁵
 - IMR (1.1 -2.5 GeV): ~1.5 x 10⁻⁵
- PHENIX preliminary data

$$M = 0.8 \pm 2.6 (sta)^{+1.0}_{-0.8} (sys) \times 0^{-5}$$

• improvement requires future Au+Au run at RHIC design luminosity

J/Ψ physics

- why is it interesting?
 - possible signature of the deconfinement phase transition
 - J/Ψ yield in heavy ion collisions can be
 - suppressed, because of Debye screening of the attractive potential between c and \bar{c} in the deconfined medium
 - enhanced, because of $c\bar{c}$ coalescence as the medium cools
- important to measure J/Ψ in Au+Au, p+p (Run-2), and d+Au (Run-3) to separate "normal" nuclear effects
- preliminary data from PHENIX
 - J/ Ψ \rightarrow e⁺ e⁻ and J/ Ψ \rightarrow $\mu^+\mu^-$ in p+p at $\sqrt{s}=200~GeV$
 - J/ $\Psi \rightarrow e^+ e^-$ in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

$J/\Psi \rightarrow e^+e^-$ in p+p collisions at $\sqrt{s} = 200 \text{ GeV}$

- ~ 1.0 billion pp collisions sampled with el.magn. calorimeter hardware trigger (single e[±]/γ)
- represents about half of total p+p statistics

$$N_{J/\psi} = 24 \pm 6 \text{ (stat)} \pm 4 \text{ (sys)}$$

$J/\Psi \rightarrow \mu^{+}\mu^{-}$ in p+p collisions at $\sqrt{s} = 200$ GeV

● ~1.7 billion pp collisions sampled with muon level-1 hardware trigger

J/Ψ p_T distribution in p+p collisions at $\sqrt{s} = 200$ GeV

- shape of p_T distribution is consistent with a PYTHIA calculation
- average p_T
 - $\langle p_T \rangle_{y=1.7} = 1.66 \pm 0.18 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \text{ GeV/c}$
 - slightly larger than measured at lower energies
 - consistent with a PYTHIA extrapolation to RHIC energy

J/Ψ rapidity distribution & integrated cross section

- combination of muon measurement at forward rapidity and electron measurement at central rapidity
 ⇒ rapidity distribution
- integrated cross section consistent for
 - Gaussian fit
 - shape from PYTHIA

$$B \cdot \sigma(p \rightarrow J/\psi + X) = \emptyset \pm \emptyset$$
 (sta) ± 9 (sys) h

$$\sigma(p \to J/\psi + X) = 3.8 \pm 0.6(sta) \pm 1.3(sys) \,\mu b$$

√s dependence of J/Ψ production in p+p

comparison with lower energy data and model predictions

CEM predictions (J.F. Amundson et al.:Phys.Lett.B390:323-328,1997)

$J/\Psi \rightarrow e^+e^-$ in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- e⁺e⁻ invariant mass analysis
- very limited statistics
 N=10.8 ± 3.2 (stat) ± 3.8 (sys)
- split minimum bias sample into 3 centrality classes

Centrality dependence of J/Y yield

- J/Ψ B-dN/dy per binary collision compared to different models for J/Ψ absorption patterns
 - J/Ψ scale with the number of binary collisions
 - J/Ψ follow normal nuclear absorption with given absorption cross sections
 - J/Ψ follows same absorption pattern as observed by NA50 (Phys. Lett. B521(2002)195)

Summary and outlook

open charm @ RHIC

- single e[±]: no direct charm measurement, but as close as it gets
- \bullet Au+Au \rightarrow cc: little room for large in-medium effects
- $p+p \rightarrow cc$: reference data are needed

● dielectron continuum and J/Ψ @ RHIC

- capability to measure rare probes has been demonstrated
- studies of continuum and J/Y suppression/enhancement pattern require more statistics to draw conclusions
- long runs of p+p (Run-3), d+Au (Run-3), and Au+Au (Run-4) are needed at RHIC design luminosity