

High transverse momentum charged particles azimuthal correlations in PHENIX

Jan Rak for PHENIX collaboration

- * Hard scattering in nuclear collisions.
- * Signals of hard scattering in AA collisions
 - > inclusive particle yields
 - > two particles correlations.
- * Azimuthal correlation function
 - > various sources of two particle correlation.
- ***** Year 1 PHENIX azimuthal correlations @ $\sqrt{s} = 130 \text{ AGeV}$
 - > centrality dependence
 - \rightarrow p_{\(\text{-}\)} dependence.
- ***** Summary & outlook.

Hard scattering in Heavy Ion collisions

schematic view of jet production

Jets:

- > primarily from gluons at RHIC
- > produced early (t<1fm)
- > sensitive to the QCD medium (dE/dx)

Observed via:

- > fast leading particles or
- > azimuthal correlations between them

Mechanisms of energy loss in vacuum (*pp*) is understood in terms of formation time and static chromoelectric field regeneration* . Any nuclear modification of this process could provide a hint of QGP formation.

* F.Niedermayer, Phys.Rev.D34:3494,1986.

October 2001 Jan Rak 2

Hard scattering signals

Hard scattered partons should fragment into two back-to-back particles in azimuth.

Partonic energy loss may*

- > reduce the back-to-back peak
- > modify the fragmentation function - near angle peak

X.N. Wang, Phys.Rev.Lett.81:(1998)2655

Correlation function

$$C(\Delta \phi) = \frac{N_{\text{real}}(\Delta \phi)}{N_{\text{mixed events}}(\Delta \phi)}$$

$$\Delta \phi = \phi_{i} - \phi_{j}$$

Directed flow flow

 $C(\Delta \phi)_{\text{flow}} \propto (1 + 2 v_1^2 \cos(\Delta \phi) + 2 v_2^2 \cos(2 \Delta \phi))$

Even @ RHIC energy, flow phenomena still dominates over signals from hard scattering.

J.Y.Ollitrault, nucl-th/0004026
October 2001

PHENIX

RUN1: summer 2000 ~5M events

× 1.5M events analyzed

- **×** -20 < collision vertex < 20 cm
- **×** Central arm tracks
 - momenta from drift chamber tracks
 - \rightarrow 1 < pt < 2.5 GeV

× Correlation functions

> mixed events from similar beam-vertex, centrality

5

Correlation function Au+Au ös = 130 AGeV

40 to 92%

0 to 5%

6

$$C(\Delta \ddot{o}) = \ddot{e} \cdot e^{-0.5(\Delta \phi / \sigma)^2} + 2 v_2^2 \cos(2\Delta \ddot{o}) + \text{offset}$$

- ***** Near-angle correlation is stronger than back-to-back.
- * Both correlations diminish in central collisions.

p_^-dependence

Angular width

- **★** Not modified jets would have an angular width ≈ 20 deg.
- * Nuclear modification (dE/dz) could lead to the broadening of the correlation peak.
- * This broadening should be stronger in central collisions. Do we see this?

The p_{\perp} dependence of angular width should provide stringent test of presence of jet signals. More statistic needed.

Possible sources of angular correlation

* Flow:

- > shape of the correlation is given by $\cos(\Delta\Phi)$ term. The relative contribution could be fixed by use of different techniques (reaction plane analysis).
- ***** Resonance decay: (UrQMD simulation)
 - \triangleright p_{\(\text{-}\)}-cut removes large fraction.
- * Weak decay:
 - > Long lived particles ($K_S^0 c\tau = 2.7 cm$, $\Lambda c\tau = 7.9 cm$) decays in the mag. field and the daughters look like high-p₁ particles.

October 2001 Jan Rak

SPS high-p, pions correlations

CERES experiment $\sqrt{s} = 17 \text{ GeV/c}$ Identified π^{\pm}

October 2001 Jan Rak 10

Summary & outlook

- * Angular correlations seen in PHENIX data are in accord with elliptic flow measurement. Small excess at near-angle correlations above the flow contribution is observed.
- **\times** This excess grows with p_{\perp} .
- **★** The angular width is rather constant with centrality, but starts to grow for most central bins.
- * Not all possible sources of observed correlation are understood. The main remaining worry concerns the weak decays in magnetic field. Detailed Monte-Carlo simulation is in progress.

Outlook

- ➤ New data @ 200 GeV is coming with better efficiency and much higher statistics.
- ***** High- p_{\perp} level-2 trigger is operational allows to study the correlation in much higher p_{\perp} range.

University of São Paulo, São Paulo, Brazil Academia Sinica, Taipei 11529, China

China Institute of Atomic Energy (CIAE), Beljing, P. R. China

Laboratoire de Physique Corpusculaire (LPC), Universite de Clermont-Ferrand, 63170

Aubiere, Clermont-Ferrand, France

Dapnia, CEA Saclay, Bat. 703, F-91191, Gif-sur-Yvette, France

IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France

LPNHE-Palaiseau, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128,

Palaiseau, France

SUBATECH, Ecole des Mines at Nantes, F-44307 Nantes, France

University of Muenster, Muenster, Germany

Banaras Hindu University, Banaras, India

Bhabha Atomic Research Centre (BARC), Bombay, India

Weizmann Institute, Rehovot, Israel

Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo 188, Japan

Hiroshima University, Higashi-Hiroshima 739, Japan

KEK, Institute for High Energy Physics, Tsukuba, Japan

Kvoto University, Kyoto, Japan

Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan

RIKEN, Institute for Physical and Chemical Research, Hirosawa, Wako, Japan

University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo, Japan

University of Tsukuba, Tsukuba, Japan

Waseda University, Tokyo, Japan

Cyclotron Application Laboratory, KAERI, Seoul, South Korea

Kangnung National University, Kangnung 210-702, South Korea

Korea University, Seoul, 136-701, Korea

Yonsei University, Seoul 120-749, KOREA

Institute of High Energy Physics (IHEP-Protvino or Serpukhov), Protovino, Russia

Kurchatov Institute, Moscow, Russia

Abilene Christian University, Abilene, Texas, USA

Brookhaven National Laboratory (BNL), Upton, NY 11973

University of California - Riverside (UCR), Riverside, CA 92521, USA

Florida State University (FSU), Tallahassee, FL 32306, USA

Georgia State University (GSU), Atlanta, GA, 30303, USA

Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA

LLNL: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

University of New Mexico, Albuquerque, New Mexico, USA

Stony Brook, NY 11794, USA

Brook (USB), Stony Brook, NY 11794-, USA

University of Tennessee (UT), Knoxville, TN 37996, USA

Myong Ji University, Yongin City 449-728, Korea

System Electronics Laboratory, Seoul National University, Seoul, South Korea

Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia

PNPI: St. Petersburg Nuclear Physics Institute, Gatchina, Leningrad, Russia

Lund University, Lund, Sweden

Columbia University, Nevis Laboratories, Irvington, NY 10533, USA

LANL: Los Alamos National Laboratory, Los Alamos, NM 87545, USA

New Mexico State University, Las Cruces, New Mexico, USA

Department of Chemistry, State University of New York at Stony Brook (USB),

Department of Physics and Astronomy, State University of New York at Stony

Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA

Vanderbilt University, Nashville, TN 37235, USA

Pythia pp $\ddot{0}s = 130 \text{ AGeV}$

Pythia pp $\ddot{o}s = 130 \text{ AGeV}$

Angular width with p_{\perp}

