Partonic Hard Scattering in Heavy Ion Collisions

Hard scatterings:

- •high Q² transfer →small α_s (pQCD regime)
- •early in collision→probe early stages of the nuclear medium
- energetic partons: probe the partonic density of the hot QCD medium (QGP) via dE/dx (gluon radiation)

Produce correlated jets of hadrons that manifest themselves through:

- •near-angle azimuthal correlations
- back-to-back azimuthal correlations

Two-Particle Azimuthal Correlations

Are sensitive to two types of processes:

Collective (flow) phenomena induced by pressure gradients; they generate a v₂-like correlation that dominates at low momenta:

$$C(\Delta\phi)_{flow} \propto (1 + 2 v_2^2 \cos(2\Delta\phi))$$

The back-to-back and nearangle peaks are generated by hard (point-like) processes; they may* be reduced by energy loss

There are two basic types of two-particle correlations:

- ■assorted p₁ correlation (closer to reaction-plane analyses). It is more sensitive to flow-like correlations.
- •fixed p₁ correlation: both particles are in the same p₁ bin. It is more sensitive to jet-like correlations.

In this paper we will use fixed p₁ azimuthal correlations to extract the properties of the near-angle peak.

Details of the analysis (I)

PHENIX Run2 Detector

- 30M minimum bias events analyzed
- ★ -30 < collision vertex < 30 cm
 </p>
- Central arm tracks
 - High quality drift chamber (DC&PC1) tracks
 - Match within 2σ in $\Delta \varphi$ and Δz in pad chamber 3 (PC3)
 - Ring Imaging Cherenkov (RICH) veto of electrons from conversions
 - For tracks with p_⊥>4GeV/c we require EmCal Energy >1GeV (vetoes fake high-p_⊥ tracks, from decays and conversion electrons).
- Correlation functions
 - mixed events from similar beam-vertex |∆Z_{vertex}|<5cm and centrality |∆Centrality|<10%

Details of the analysis (II)

Possible contributions to the near-angle peak (other than jets):

- conversion e[±]: since they "see" a small region of the magnetic field, they are wrongly reconstructed as high-p_⊥ tracks; they are efficiently reduced by the RICH veto and the energy cut.
- weak decays (K⁰_S, Λ): their contribution is not significant in the p_⊥ region presented here. Also, they produce a narrower peak than jets.
- random background: reduced by the outer detector (PC3) tight matching.

We also use two physics cuts to asses the jet/non-jet contributions:

- |Δη|>0.35, (q₁q₂)=(+ +)(- -), named here the kinematically disfavoured jet-like near-angle because hadrons from jets cluster in pseudo-rapidity space and come with opposite charge
- $|\Delta\eta|$ <0.35, (q_1q_2) =(+ –), named here the kinematically favoured jet-like near-angle

Extraction of the near-angle peak

The correlation is calculated with a mixed event technique:

$$C(\Delta \phi) = \frac{N_{\text{real}}(\Delta \phi)}{N_{\text{mixed events}}(\Delta \phi)} \quad \Delta \phi = |\phi_1 - \phi_2|$$

with both the "real" and "mixed" $\Delta \varphi$ distributions normalized to unity. Then it is fitted with a flow-like term (cosine modulation) and a jet-like term (gaussian around $\Delta \varphi$ =0):

$$N\left[1+2v_{2}^{2}\cos(2\Delta\varphi)\right]+\sqrt{\frac{\pi}{2}}\frac{Y}{(1-Y)\sigma}e^{-\frac{1}{2}\left(\frac{\Delta\varphi}{\sigma}\right)^{2}}$$

where Y is the relative yield (area of near-angle peak divided by the total area of the correlation function) and σ is the width of the near-angle peak; v_2 gives the strength of the cosine modulation.

Slide 8 shows two sets of χ^2 -contour plots for the same p_{\perp} bin, but different centralities (most peripheral and most central). The fitted v_2 becomes consistent with 0 at high- p_{\perp} in central events.

The error bars on the extracted quantities contain statistical errors and systematical errors estimated by varying the input parameters of the fit.

Mid-Central Fixed p_{\perp} Correlation Function

Peripheral Fixed p_{\perp} Correlation Function

χ²-Contours of Correlation Function Fit

(see Slide 5 for comments)

Relative Yields – p₁ Dependence

Relative Yields – Centrality Dependence

Near-Angle Widths

The extracted width of the gaussian term of the fit to the correlation function is plotted against p_{\perp} and centrality:

The dashed line (not a fit) corresponds to a constant j_{\perp} =400 MeV. (transverse momentum with respect to "jet" axis)

Conclusions and Outlook

- Jet-like near-angle structure is observed in two-particle correlations in Au-Au collisions at $\sqrt{s} = 200 AGeV$
- The relative yield increases with both centrality and p_⊥.
- Near-angle widths also show a p_⊥ dependence characteristic for jets.
- The study of the near-angle peak in other channels than h[±]-h[±] (like π⁰-h[±], where it has been already observed with the same data set) will allow us a better extraction of its properties.