Partonic Hard Scattering in Heavy lon
Collisions

leading particle

leading particle

Hard scatterings:
=high Q2 transfer >small a, (pQCD regime)
=early in collision—>probe early stages of the nuclear medium
=energetic partons: probe the partonic density of the hot QCD
medium (QGP) via dE/dx (gluon radiation)
Produce correlated jets of hadrons that manifest themselves
through:
»near-angle azimuthal correlations
=back-to-back azimuthal correlations



Two-Particle Azimuthal Correlations

Are sensitive to two types of processes:

\/ Collective (flow) phenomena induced

by pressure gradients; they generate
a v,-like correlation that dominates
at low momenta:

CAP),.. O (1 + 2v,” cos(2Ap))
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~ The back-to-back and near-
Ly mﬁk\\}\\\\\m angle peaks are generated by
% e Ol a0 deg hard (point-like) processes;
_ they may* be reduced by
e energy loss
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There are two basic types of two-particle correlations:
=assorted py correlation (closer to reaction-plane analyses). It
is more sensitive to flow-like correlations.
=fixed pg correlation: both particles are in the same pg bin. It
IS more sensitive to jet-like correlations.

In this paper we will use fixed py azimuthal correlations to extract
the properties of the near-angle peak.
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Details of the analysis (l)

PC3 central
PC2 Magnet

PHENIX
Run2
Detector

West Fast

30M minimum bias events analyzed
-30 < collision vertex < 30 cm
Central arm tracks
= High quality drift chamber (DC&PC1) tracks
= Match within 20 in A$¢ and Az in pad chamber 3 (PC3)

= Ring Imaging Cherenkov (RICH) veto of electrons from
conversions

= For tracks with pp>4GeV/c we require EmCal Energy
>1GeV (vetoes fake high-py tracks, from decays and
conversion electrons).

Correlation functions

= mixed events from similar beam-vertex |AZ, .| <5CM
and centrality |ACentrality|<10%



Details of the analysis (ll)

Possible contributions to the near-angle peak (other than jets):

= conversion e*: since they “see” a small region of the magnetic
field, they are wrongly reconstructed as high-p tracks; they
are efficiently reduced by the RICH veto and the energy cut.

= weak decays (K%, A): their contribution is not significant in the

pp region presented here. Also, they produce a narrower peak
than jets.

= random background: reduced by the outer detector (PC3) tight
matching.

We also use two physics cuts to asses the jet/non-jet
contributions:

= |An|>0.35, (9,9,)=(+ +)(— =), named here the kinematically
disfavoured jet-like near-angle because hadrons from jets

cluster in pseudo-rapidity space and come with opposite
charge

= |An|<0.35, (q,9,)=(+ —), named here the kinematically
favoured jet-like near-angle



Extraction of the near-angle peak

The correlation is calculated with a mixed event technique:

N, (Ag)
C A — real
( ¢) N mixed events (A ¢)

with both the “real” and “mixed” A¢ distributions normalized
to unity. Then it is fitted with a flow-like term (cosine
modulation) and a jet-like term (gaussian around A¢=0):
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where Y is the relative yield (area of near-angle peak divided by
the total area of the correlation function) and o is the width of the
near-angle peak; v, gives the strength of the cosine modulation.

Ap=|g-g,

Slide 8 shows two sets of x2-contour plots for the same p_ bin,
but different centralities (most peripheral and most central). The
fitted v, becomes consistent with 0 at high- pg in central events.

The error bars on the extracted quantities contain statistical
errors and systematical errors estimated by varying the input
parameters of the fit.



Mid-Central Fixed p,Correlation
Function

Kinematically favoured
jet-like near-angle

(see Slide 4 for comments)

Kinematically disfavoured
jet-like near-angle
(see Slide 4 for comments)
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(see Slide 4 for comments)

Peripheral Fixed p,Correlation
Function

Kinematically favoured
near-angle peak

Kinematically disfavoured

near-angle peak

(see Slide 4 for comments)
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¥x2-Contours of Correlation Function Fit

(see Slide 5 for comments)
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Relative Yield Relative Yield

Relative Yield

Relative Yields — p, Dependence
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Relative Yield

Relative Yields — Centrality
Dependence
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Near-Angle Widths

The extracted width of the gaussian term of the fit to the
correlation function is plotted against p ; and centrality:

i E#Cemmo | ,%

..

Cent 10-20

.
Y
-
.

|, Cent 2040

i

{’“ﬂw

u
LT 3

.

=
=

p[Gevie]

1 2 3
p][Gevi]

A Pt

2 3
b [GeVie]

l
1 l 3
p[GeVie]

b Gevie]

The dashed line (not a fit) corresponds to a constant j;=400 MeV.
(transverse momentum with respect to “jet” axis)
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Conclusions and Outlook

Jet-like near-angle structure is observed in
two-particle correlations in Au-Au collisions at

Js =2004GeV

The relative yield increases with both centrality
and pg,.

Near-angle widths also show a p; dependence
characteristic for jets.

The study of the near-angle peak in other
channels than h*-h* (like T°-h*, where it has
been already observed with the same data set)
will allow us a better extraction of its properties.
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