Near-angle, high- p_{\perp} two-particle correlations at \sqrt{s} =200AGeV measured in the PHENIX experiment

Paul Constantin
(Iowa State University)
for the PHENIX collaboration

Outline

- Main sources of two-particle correlations
 - parton fragmentation jets
 - elliptic flow
- Extraction of the correlation function
- Jet signatures in the data:
 - centrality and p₁ dependence of relative yield
 - j₁-scaling of near-angle width
- Conclusions and outlook

PHENIX

Correlations induced by jets

Hard scatterings:

- high Q² transfer small α_s (pQCD)
- early in collision probe early stages
- energetic partons: probe the partonic density of the hot QCD medium (QGP) via dE/dx (gluon radiation)

Produce jets of hadrons:

- monojets near-angle azimuthal correlations
- dijets back-to-back azimuthal correlations
- broadening by interaction with nuclear medium*

^{*} X.N. Wang, Phys.Rev.Lett.81:(1998)2655

Correlations induced by azimuthal anisotropy

Spatial azimuthal anisotropy in the initial state

→ pressure gradients →

elliptic flow momentum pattern in the final state

$$C(\Delta\phi)_{flow} \propto (1 + 2 v_2^2 \cos(2\Delta\phi))$$

Details of the analysis

30M min-bias events analyzed

Contributions to the near-angle peak (other than jets):

- conversion e[±]: efficiently reduced by the RICH veto.
- weak decays (K⁰_S, Λ): not significant in the p_⊥ region presented here. Also, they produce a narrower peak than jets.
- random background: reduced by the outer detector (PC3) tight matching.

Extraction of the near-angle peak

Correlation function (mixed event technique):

$$C(\Delta\phi) = \frac{N_{\text{real}}(\Delta\phi)}{N_{\text{mixed events}}(\Delta\phi)}, \quad \Delta\phi = |\phi_1 - \phi_2|$$

Fit with a flow-like term and a jet-like term:

$$N\left[1+2v_{2}^{2}\cos(2\Delta\varphi)\right]+\sqrt{\frac{\pi}{2}}\frac{NY}{(1-Y)\sigma}e^{-\frac{1}{2}\left(\frac{\Delta\varphi}{\sigma}\right)^{2}}$$

- Y is the relative yield → gaussian area / total area
- σ is the width of the near-angle peak
- v₂ is the elliptic flow coefficient

Cuts to enhance the jet contribution:

- Small rapidity gap, opposite charge (|Δη|<0.35, (q₁q₂)=(+ –))
 - kinematically favoured jet-like near-angle
- Large rapidity gap, same charge $(|\Delta \eta| > 0.35, (q_1q_2) = (+ +)(- -))$
 - kinematically disfavoured jet-like near-angle

Peripheral Fixed p_{\perp} Correlation Function

Relative Yields

Centrality and p₁ dependence indicative of jet-like source

PH*ENIX

pQCD parton fragmentation in p-p collisions

j is the transverse momentum with respect to "jet" axis

CCOR Collaboration Phys. Lett. 97B, 163 (1980) $<|j_T|> = 400 \text{ MeV/c},$ independent of $p_{\perp Trig}$ for $\sqrt{s} = 31, 45, 62 \text{ GeV}$

Near-Angle Widths

The extracted width of the gaussian term (the dashed line - not a fit - corresponds to a constant j_1 =400 MeV):

Within the present errors, no evidence of broadening

Conclusions and Outlook

• Jet-like near-angle structure is observed in two-particle correlations in Au-Au collisions at $\sqrt{s} = 200 AGeV$

- The relative yield decreases with centrality and increases with p₁.
- Near-angle widths also show a p_⊥ dependence characteristic for jets. No centrality dependence.
- Comparison with PHENIX p-p data at the same collision energy will be added soon.
- The study of the near-angle peak in other channels than h[±]-h[±] (like π⁰-h[±]) will allow us a better extraction of its properties.