

Simulation Study for low mass electronpair measurements

K. Ozawa, C. Aidala, R. Averbeck, C. L. Woody for the PHENIX collaboration

- Simulation Data and parameters
- Cocktail plot
- Dalitz rejection
- Signal Survival Rate

Simulation Data

- Particles were generated using Exodus (made by R. Averbeck)
 - →Proton, K⁺, K⁻, π^+ , π^- , π^0 , η , η' , ω , ρ , ϕ , J/ψ,Y Pt<10GeV/c with power low distribution. |Rapidity| < 1.5
 - → Particle decays were also simulated.
 - \rightarrow Dalitz decays of $\pi 0$, η , η'
 - \rightarrow Vector mesons $(\omega, \rho, \phi, J/\psi, Y)$ decays
- Electrons and positrons from charm decays were generated by PYTHIA and merged to EXODUS output
- Photon conversions were simulated using PISA (done by C. Aidala, for details, see tomorrow's talk)
 - 4 layers of Silicon, TPC and HBD included

Simulation Parameters

Central events (dN_charge/dy(y=0) = 650)

0.445

- 3.0 million events
- Ratio to dN/dy

_+	or		\wedge	101
π^+	ΟI	π	U.	401

0.056

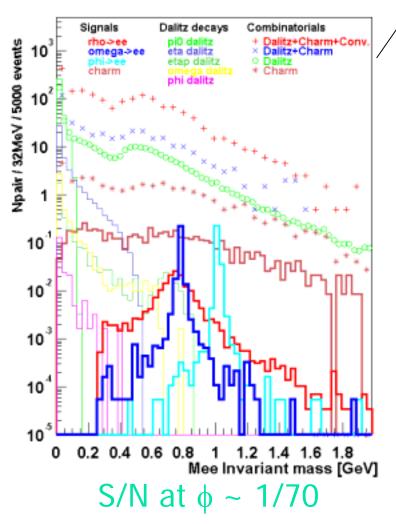
0.062

0.0107

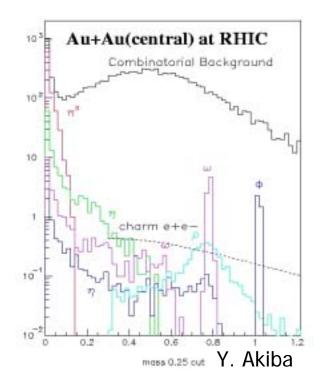
Charm

• Ncharm/event = Nbinary * σ (p-p charm) / σ (total p-p)

• σ (total p-p) = 41 mb, σ (p-p charm) = 648 μ b Nbinary = 1000, thus Ncharm/event = 15.8



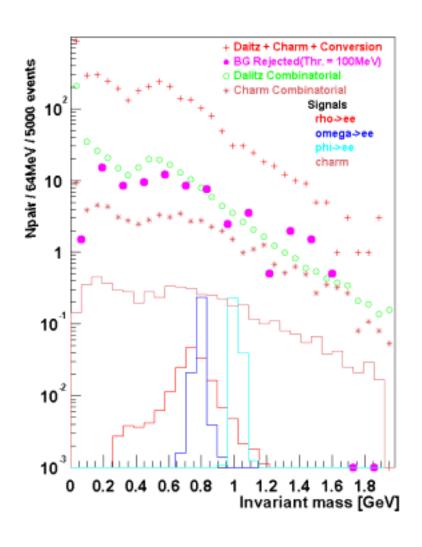
Assumptions for the calculation


- Both electron and positron from vector meson decays going to the PHENIX acceptance (Pt > 200 MeV/c, $|\eta|$ < 0.33 and 2*($|\phi|$ < 90 degree)).
- The rejection factor for pion.
 - In the PHENIX acceptance:
 - 200 for all momentum (RICH and EMC)
 - 200 below 4 GeV/c (TPC/HBD)
 - Out of the PHENIX acceptance:
 - 200 below 4 GeV/c (TPC/HBD)
- Momentum of electron is required above 10MeV/c. Perfect (100%) efficiency for electron identification and tracking is assumed. Perfect resolution.

Cocktail Plot (Central event)

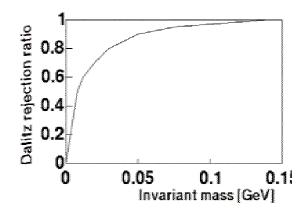
Include electrons from conversion at the first layer of Si only.

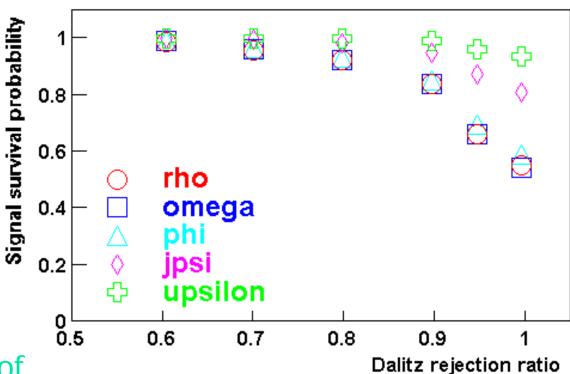
S/N at $\phi \sim 1/20$



Dalitz Rejection

- Dalitz rejection scheme
 - →Invariant mass is calculated with all combination of opposite sign pair.
 - → Find the smallest mass pair, and if those invariant mass is less than the cut value, these tracks are rejected.
 - → Continue until the smallest mass will be above the cut value.


Cocktail plot after rejection



- S/N (take full width)
 - →Rho 1/320
 - → Omega 1/40
 - →Phi 1/9
- S/N is improved by the factor of 5 – 10.

Signal Survival Probability

• Survival probability of ρ, ω, ϕ is ~70% for Dalitz rejection ratio of 95% (Thr. = 100 MeV).

- A simulation includes the electron-pairs from charm decays and conversion was done.
- A TPC and HBD which can reduce the Dalitz and conversion backgrounds.
- The large charm cross section in heavy ion collisions is another significant source of background which cannot be eliminated by Dalitz rejection.