Measurement of $J/\psi \rightarrow e^+ e^-$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at RHIC-PHENIX

PANIC02, Osaka, Sep. 2002 Kyoichiro Ozawa (University of Tokyo) For the PHENIX collaboration

Contents

Physics Motivation

PHENIX Experiment

Result from J/ $\psi \rightarrow e^+ e^-$ at $\sqrt{s_{NN}} = 200 \text{ GeV}$ Summary

Physics Motivation

- Observe and measure the phase transition from hadronic matter to a plasma of deconfined quarks and gluons (Quark Gluon Plasma(QGP)).
- One of the signals of the formation of QGP.
 - J/ψ Suppression was predicted by Matsui and Satz (Phys. Lett. B178, 416 (1986))
 - Debye colour screening will lead to suppression of charmonium production in heavy ion collisions
- PHENIX can measure J/ψ decay yields to ee and μμ for pp, pA and AA collisions

First results from PHENIX for J/ Ψ production at $\sqrt{s} = 200A$ GeV in AuAu collisions will be presented in this talk.

PHENIX Experiment

- Events trigger
 - Beam Beam Counter
 - Zero Degree Calorimeter
- Electrons ($|\eta| < 0.35$)
 - Charged Tracks
 - Drift Chamber,
 - Pad Chambers
 - Ring Image CherenkovCounter

EM Calorimeter

To ZDC

To BBC

Measurements with the PHENIX detector

- Event characterization in terms of impact parameter (b) in Au + Au collisions.
- Coincidence between BBC and ZDC
 - Determine collision geometry
- Extract variables using Glauber Model
 - Number of participant (N_part)
 - Represent centrality
 - Number of binary collisions (N_binary)
 - Incoherent sum of N-N collisions becomes a base line for A-A collisions.

Measure the J/ ψ yield per N_binary as a function of N_part and discuss J/ ψ suppression.

spectator

Analysis

- Event selection
 - Minimum Bias trigger and Offline vertex cut
 - Each BBC has at least 2 hits and |Z position| < 30 cm
 - Good runs are selected
 - 25 M events are analyzed
 - LVL-2 triggered events are not used
- Electron Identification
 - Associate with RICH Rings
 - Require matching of energy and momentum
- Make Invariant Mass of electron positron pairs and measure J/ψ yields for 3 centralities.
 - 0-20%, 20-40%, 40-90%

Invariant mass spectra

$$N_{J/\Psi} = 10.8 \pm 3.2 \text{ (stat)} + 3.8 - 2.8 \text{ (sys)}$$

$N_{J/\Psi} = 5.9 \pm 2.4 \text{ (stat)} \pm 0.7 \text{ (sys)}$

Invariant mass spectra

$$N_{J/\Psi} = 4.5 \pm 2.1 \text{ (stat)} \pm 0.5 \text{ (sys)}$$

$$N_{J/\Psi} = 3.5 \pm 1.9 \text{ (stat)} \pm 0.5 \text{ (sys)}$$

Analysis for B-dN/dy

$$\begin{array}{lll} B_{ee} \, dN/dy_{|y=0} & = & N_{\underline{J/\Psi}} \\ & & N_{events} \, A \, \epsilon \, \epsilon_{centrality} \, dy \end{array}$$

• dy A ε = acceptance * J/ ψ reconstruction eff.

$$0.00407 \pm 0.0009$$

 $\epsilon_{centrality}$: centrality dependent efficiency

$$0.65 \pm 0.07 (00-20\%)$$

$$0.76 \pm 0.08 (20-40\%)$$

$$0.86 \pm 0.09 (40-90\%)$$

• N_{events}: minbias events in the centrality bin

 $N_{J/\Psi}^{\ \ measured}$ extracted using 7 different fitting procedures to establish systematic errors

J/ψ B-dN/dy per binary collision

- Statistical errors are standard deviations
- Systematic errors are maximum plausible systematic spreads in values

Comparison

We can not discriminate between scenarios, given our present statistical accuracy

Summary

PHENIX has measured J/ Ψ -> ee yields at $\sqrt{s} = 200 \text{A GeV}$ for AuAu collision in -0.35 < η < +0.35

Preliminary results were presented here from an analysis of about 1/2 of the AuAu data

We will need improved statistics to draw any conclusions about J/Ψ suppression at RHIC

09/30/02 K. Ozawa 11