## Probing Correlations across pT Space via Assorted Two-Particle Azimuthal Correlations



the PHENIX Collaboration

## Outline



- Brief Motivation
- PHENIX subsystems used for correlation study
- Assorted Correlation Method
- Data
  - Typical Correlation Functions
  - pT reference study
- Model comparisons
- Summary/Outlook

## **Motivation**



#### Jets:



- Primarily from gluons at RHIC
- Produced early in the collision
- Probe hot and dense media that they traverse

### CGC:



Provides insights on Saturation Physics



- Primarily from pressure buildup
- \* Produced early
- \* Reflect conditions in collision zone (energy density etc.)

Correlation studies can provide information On the particle production mechanism, EOS, QGP formation ...

### PHENIX Subsystems Used







30 Million minimum bias events analysed

### Extracting v2 via Assorted Correlations



$$\frac{dN}{d(\Delta\phi)} = a \times \left[1 + 2P_2 \cos(2\Delta\phi)\right] + b \times \exp\left(-\frac{1}{2} \times \left(\frac{\Delta\phi}{\sigma}\right)^2\right)$$









0.85 < pT < 1.05

### pT Dependence of Assorted Correlation Functions - Data





- •Correlation functions show asymmetries and anisotropies
- •Asymmetries and anisotropies develop with increasing pT

# Reference Dependence of Asymmetries in the Assorted Correlation Functions

### low pT reference high pT reference



- •Asymmetries are sensitive to the pT of the reference range.
- •Asymmetries suggestive of jet-like correlations
- •Low pT particles are correlated with high pT particles

## pT Dependence of Assorted Correlation Functions - HIJING





- •Correlation functions show asymmetries and anisotropies
- •Asymmetries and anisotropies develop with increasing pT

## Reference Dependence of Anisotropies in the PHIENIX @ RHID Assorted Correlation Functions

AuAu @ 
$$\sqrt{s_{NN}} = 200 \, GeV$$





- •Anisotropy independent of reference
  - -> high-pT particles correlated with low-pT particles
- •Anisotropy mildly dependent of reference

#### Summary



### **Conclusion and Outlook**

- **Assorted correlation technique is a powerful probe for testing correlations across pT space**
- **❖** The azimuthal correlation functions for AuAu show asymmetries and anisotropies
- **Asymmetries are suggestive of (mini) jet-like correlations**
- **\Delta** High pT particles correlated with low pT particles
- **❖** The AuAu data shows v2(pT) obtained from the assorted method to be rather insensitive to the reference range over a broad pT range from low to high pT.
- **❖** (mini) jet dominated HIJING model gives v2(pT) which shows moderte sensitivity to reference range in the same pT range
- **\*** What connects high and low pT particles in the data? Any model attempting to describe the data needs to incorporate this.

### Assorted Correlation Functions - PYTHIA





- •Correlation functions show strong near- and far-angle correlations
- •Correlation increases with increasing pT
- •PYTHIA -> Correlation due to jet (even at low pT: tails of fragm. fct.)

## pT Dependence of Assorted Correlation Functions - HIJING





- •Correlation functions show asymmetries and anisotropies
- •Asymmetries and anisotropies develop with increasing pT
- •Correlations of high-pT particles w/ low-pT particles weaker than in the data