π⁰-Charged Hadron Azimuthal Correlations Nathan Grau Iowa State University For the PHENIX Collaboration #### Outline - Motivations for two particle correlation functions: azimuthal anisotropy (elliptic flow) - Analysis from the PHENIX experiment from Au-Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$ - ► Use PHENIX capability to measure high- p_T π^0 and extract the v_2 flow parameter ## Motivation - Azimuthal Anisotropy / Elliptic Flow - ➤ Non-central collisions → pressure gradient - ➤ Particles correlated with reaction plane Molnar & Voloshin, nucl-th/0302014 Pressure gradient $$v_2 = \langle \cos(2\phi) \rangle$$ - ➤ Quark Coalescence large saturated v₂ - >meson & baryon flow differs FIG. 1: Qualitative behavior of baryon and meson elliptic flow as a function of p_{\perp} from quark coalescence. # Correlation Functions and v₂ Extraction $$C(\Delta\phi) = \frac{dN_{real} / d\Delta\phi}{dN_{mix} / d\Delta\phi}$$ The Correlation Function for two-particle correlations is given as: - Numerator: pairs within event. - Denominator: pairs within different events. - Detector efficiencies and acceptance cancels. $$C(\Delta \phi) = 1 + 2v_2^{\pi^0} v_2^{h^{+/-}} \cos(2\Delta \phi)$$ \triangleright Need h^{+/-} - h^{+/-} Correlation Function in a reference p_T bin #### PHENIX Experiment - ➤ Drift Chamber (DC) and Pad Chamber 1 (PC1) for tracking - ➤ RICH rejects e⁺,e⁻ - EMCal (PbSc, PbGl) for high- p_T γ's reconstruct π^0 's #### Extracting v₂ - Candidate π^0 all γ pairs under peak - Background =Combinatoric γ pairsin mass - ➤Bin mass towards background v₂ estimate # Correcting the π^0 v₂ $$v_2^{measured} = \frac{Sv_2^{\pi^0} + Bv_2^B}{S + B}$$ To measure π^0 v₂: - ➤ v₂ meausred extracted in mass - Measure v_2 outside π^0 mass bins. - $ightharpoonup^{B}$ obtained from a linear fit with the v_2 outside π^0 mass bins. $$v_2^{\pi^0} = v_2^{measured} + \frac{B}{S} \left(v_2^{measured} - v_2^B \right)$$ #### Background to Signal for Min Bias # Corrected π^0 v_2 - $ightharpoonup v_2$ rises to and saturates at 0.15 for $p_T > 3$ GeV - Large error bars due to extrapolation of the v_2^B as well as the B/S. #### Summary - Presented work in progress on π^0 -h^{+/-} correlations from = 200 GeV Au-Au at the PHENIX experiment. - \triangleright Presented initial correction to the π^0 v₂. - Future work: Good PID for high- $p_T \pi^0$, have v_2 for p-p, d-Au, and next Au-Au run. # Extracting v_2^B Point extracted from linear fit to the data points outside π^0 mass. massHist1 $1.5 < p_T < 2.0 \text{ GeV}$ 0.104 0.102 0.1 0.098 0.096 50 100 150 200 250 300 350 400 Error bars calculated by the extreme v_2^B values of the data points. # π⁰ Corrected v₂ & Reaction Plane v₂