π⁰-Charged Hadron Azimuthal Correlations

Nathan Grau
Iowa State University
For the PHENIX Collaboration

Outline

- Motivations for two particle correlation functions: azimuthal anisotropy (elliptic flow)
- Analysis from the PHENIX experiment from Au-Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- ► Use PHENIX capability to measure high- p_T π^0 and extract the v_2 flow parameter

Motivation - Azimuthal Anisotropy / Elliptic Flow

- ➤ Non-central collisions → pressure gradient
- ➤ Particles correlated with reaction plane

Molnar & Voloshin, nucl-th/0302014

Pressure gradient

$$v_2 = \langle \cos(2\phi) \rangle$$

- ➤ Quark Coalescence large saturated v₂
- >meson & baryon flow differs

FIG. 1: Qualitative behavior of baryon and meson elliptic flow as a function of p_{\perp} from quark coalescence.

Correlation Functions and v₂ Extraction

$$C(\Delta\phi) = \frac{dN_{real} / d\Delta\phi}{dN_{mix} / d\Delta\phi}$$

The Correlation Function for two-particle correlations is given as:

- Numerator: pairs within event.
- Denominator: pairs within different events.
- Detector efficiencies and acceptance cancels.

$$C(\Delta \phi) = 1 + 2v_2^{\pi^0} v_2^{h^{+/-}} \cos(2\Delta \phi)$$

 \triangleright Need h^{+/-} - h^{+/-} Correlation Function in a reference p_T bin

PHENIX Experiment

- ➤ Drift Chamber (DC) and Pad Chamber 1 (PC1) for tracking
- ➤ RICH rejects e⁺,e⁻
- EMCal (PbSc, PbGl) for high- p_T γ's reconstruct π^0 's

Extracting v₂

- Candidate π^0 all γ pairs under peak
- Background =Combinatoric γ pairsin mass
- ➤Bin mass towards background v₂ estimate

Correcting the π^0 v₂

$$v_2^{measured} = \frac{Sv_2^{\pi^0} + Bv_2^B}{S + B}$$

To measure π^0 v₂:

- ➤ v₂ meausred extracted in mass
- Measure v_2 outside π^0 mass bins.
- $ightharpoonup^{B}$ obtained from a linear fit with the v_2 outside π^0 mass bins.

$$v_2^{\pi^0} = v_2^{measured} + \frac{B}{S} \left(v_2^{measured} - v_2^B \right)$$

Background to Signal for Min Bias

Corrected π^0 v_2

- $ightharpoonup v_2$ rises to and saturates at 0.15 for $p_T > 3$ GeV
- Large error bars due to extrapolation of the v_2^B as well as the B/S.

Summary

- Presented work in progress on π^0 -h^{+/-} correlations from = 200 GeV Au-Au at the PHENIX experiment.
- \triangleright Presented initial correction to the π^0 v₂.
- Future work: Good PID for high- $p_T \pi^0$, have v_2 for p-p, d-Au, and next Au-Au run.

Extracting v_2^B

Point extracted from linear fit to the data points outside π^0 mass.

massHist1 $1.5 < p_T < 2.0 \text{ GeV}$ 0.104 0.102 0.1 0.098 0.096 50 100 150 200 250 300 350 400

Error bars calculated by the extreme v_2^B values of the data points.

π⁰ Corrected v₂ & Reaction Plane v₂

