

Optimizing the Reconstruction of ϕ Mesons in K+K- Decays with the PHENIX Experiment at RHIC

Mohammed Muniruzzaman
University of California Riverside
for
PHENIX Collaboration

Quark Matter 2002, Nantes, France

Motivation

The Main goal of the Heavy Ion Program at RHIC

Identification of experimental signals from potential phase transitions in strongly interacting matter associated with deconfinement or chiral symmetry restoration

- An enhanced φ-meson production has been suggested as a signature for the formation of a deconfined phase
- Medium modifications of φmeson properties might be related to the expected chiral phase transition
- ► The change in the branching ratio in leptonic and hadronic channels may point to the chiral symmetry restoration.

PHENIX in Run-2

PHENIX Central Arm

Capable of Measuring hadrons, electrons and photons

Electromagnetic Calorimeter

Time-of-Flight Detector

Excellent Particle Identification Capability

Particle Identification

Particle Identified through High Resolution Time-of-Flight Detector

Particle Identified through
Electromagnetic Calorimeter

Data Sample Selection

- 25 Million Minimum Bias Au+Au events
- Track Selection
 - 3 σ track projection matching at PC3
 - 3 σ matching on PC3
 - Best quality DC tracks
- Energy Loss in TOF > 2 MeV
- Momentum between 200MeV/c and 1.2 GeV/c in Time of Flight
- Momentum upto 900 MeV/c in EMCal
- 3σ cut on the calibrated mass² of kaon
- 5σ above the Pion mass² band

Mass squared of Particles are Calculated. Sample is selected on its mass² Distribution

3σ around the peak of mass²

Invariant Mass

Mixed N_{+-} Normalized by Actual Pair N_{++} and N_{--} as $2\sqrt{(N_{++}.N_{--})}$

Fit with a Breit-Wigner Convoluted with a Gaussian

Invariant 2k

Another approach to extract ϕ signal by looking at the difference of 4-momenta of kaons: $k = \sqrt{(p_{1\mu}-p_{2\mu})^2}$

Mixed N_{+-} Normalized by Actual Pair N_{++} and N_{--} as $2\sqrt{(N_{++}.N_{--})}$

Advantages:

- ■Pushes the ϕ peak away from the kinematic edge
- ■Puts any correlated pairs into a different region of phase space

Background above \$\phi\$

- Investigate background above φ, m~1.07 GeV
 - Make looser PID cut (4σ)
 - Subtraction done by normalizing to region above peak
 - Larger contamination from secondary peak
- K_s from misidentified momentum in the TOF array?
 - Reconstruct mass assuming particles are pions
 - Peak shows up at ~494 MeV ~M_K
- Make a tighter PID cut 1σ
 - Extra mass peak largely disappears

Acceptance vs m_t

- 3 Centrality Classes 0%-10%, 10%-40%, 40%-92%
- 8 M_t Bins 1.6-1.8,1.8-2.0,2.0-2.2,2.2-2.4,2.4-2.6,2.6-2.8,2.8-3.0,3.0-4.0
- Fitting for each centrality and M_t bins are done by fixing the values of mass and Γ from the fit of min bias, and letting the constant free.

Work in progress toward m_t distribution

Invariant Mass in EMCal

Advantages:

- Large Acceptance
- Kaons accepted upto p<900 Mev</p>
- Complements the TOF measurements in the low m_t region

Summary

- Using the excellent PID capability of PHENIX Time of Flight Detector ϕ is reconstructed via K⁺K⁻ channel for the Au-Au Collisions at $\sqrt{S_{NN}}$ =200GeV.
- The mass is fitted with a Breit-Wigner Convoluted with a Gaussian with a resolution of 1.2 MeV determined from simulation. The preliminary fit values for the mass and Γ agrees well the PDB values. The systematic errors on these numbers are still under investigation.
- With the available statistics 3 bins of centrality and 8 bins in m_t could be made which enabled us to study the yield of φ. This analysis is still in progress.
- It has been demonstrated that φ can be reconstructed through Electromagnetic Calorimeter. This will enable us to accumulate more statistics and probe into the low m_t region.