

Reconstruction of ϕ Mesons in K+K-Channel for Au-Au Collisions at $\sqrt{s_{NN}}$ =200 GeV by the PHENIX Experiment at RHIC

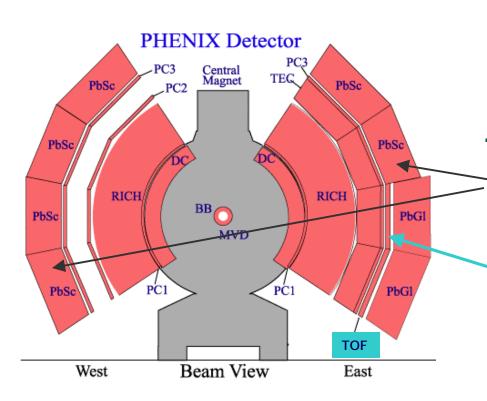
M. Muniruzzaman
University of California Riverside
For
PHENIX Collaboration

Outline

- Motivation
- Detector Setup
- Particle Identification
- Data Sample Selection
- Transverse Mass Spectra of \(\phi \)

Motivation

- An enhanced φ-meson production has been suggested as a signature for the formation of a deconfined phase.
- Chiral symmetry restoration expected in heavy ion collisions may lead to medium modifications of φ-meson properties.
- ► The change in the branching ratio in leptonic and hadronic channels may point to the chiral symmetry restoration.
- The measurement of φ in K+K- channel combined with the measurement in the e+e- channel may be a good diagnostic tool of the new phase created in the heavy ion collisions.


R. Rapp nucl-th/0204003

PHENIX in Run-II

PHENIX Central Arm

Capable of Measuring hadrons, electrons and photons

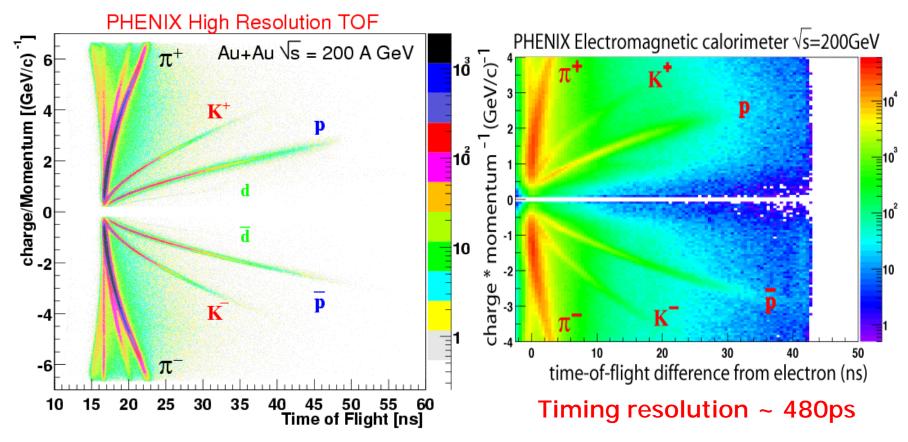
Tracking:

Drift Chamber Pad Chamber Pad Chamber 3

Kaon Identification

Electromagnetic Calorimeter

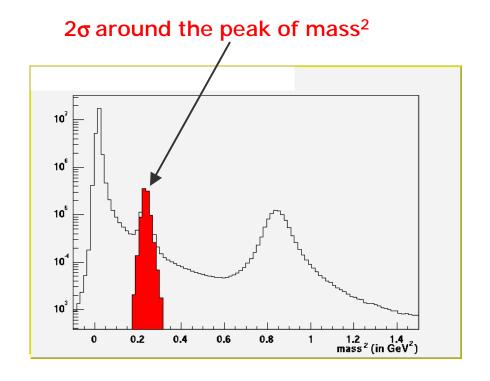
Time-of-Flight Detector


Excellent Particle
Identification Capability

Particle Identification

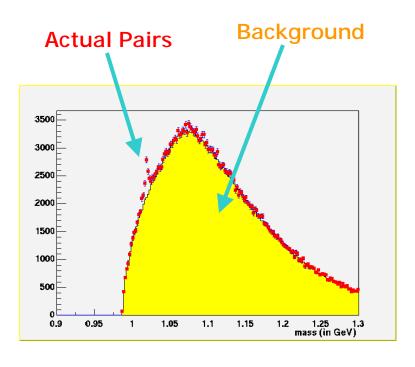
Particle Identified through High Resolution Time-of-Flight Detector

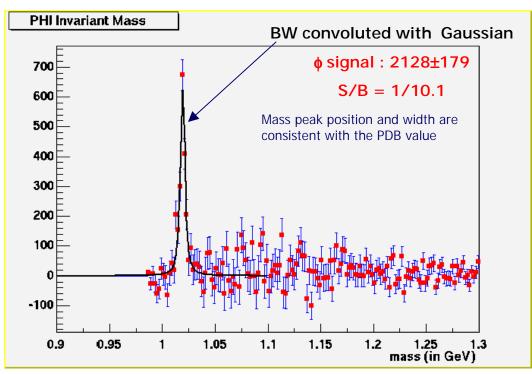
Timing resolution ~ 120ps


Data Sample

Particles identified in TOF are used for this analysis

- 27.94 Million Minimum Bias Au+Au events.
- Track Selection
 - 3σ track projection matching.
- Momentum between 300MeV/c and 2.0 GeV/c.
- 2σ cut on the calibrated mass² of kaon at TOF.


Mass squared of Particles are Calculated. Sample is selected on its mass² Distribution



φ → K⁺K⁻ Signal in the TOF

- K⁺ and K⁻ from same event are paired together to give Actual N₊.
- K⁺ and K⁻ from different events, but from same centrality and vertex class, are paired together to give Mixed N₊.
- Mixed N_{+-} Normalized by Actual Pair N_{++} and N_{-} as $CB = 2\sqrt{(N_{++}.N_{--})}$, where CB stands for the combinatorial background
- Signal = Actual N₊ CB

m_t Distribution: Analysis Procedure

3 Centrality Classes: 0%-10%, 10%-40%, 40%-92%

9 m, bins: 1.2-1.6, 1.6-1.8, 1.8-2.0, 2.0-2.2, 2.2-2.4, 2.4-2.6, 2.6-2.8, 2.8-3.0, 3.0-4.0 GeV

$$\frac{d^{2}N}{dm_{t}dy} = N_{\phi} \frac{MC_{thrown}}{MC_{accepted}} \frac{1}{evt} \frac{1}{\varepsilon_{embed}^{2}} \frac{1}{\frac{cf}{0.92}} \frac{1}{BR} \frac{1}{\Delta m_{t}}$$

where

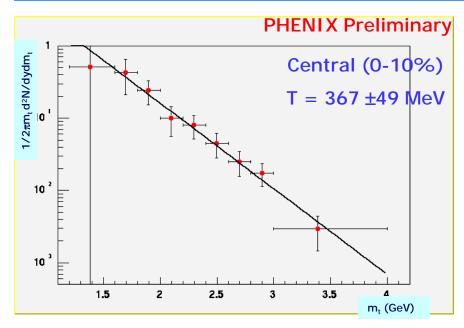
 $N_{\phi}=\varphi$ signal, the number of counts in $\pm 2\Gamma$ window in the invariant mass plot

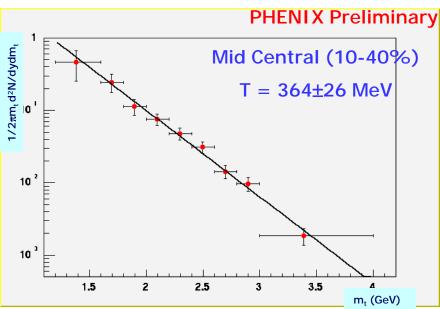
MC = Monte-Carlo φ

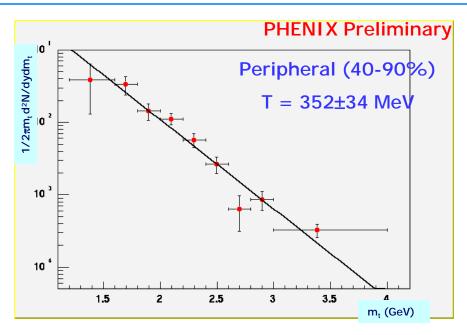
 ϵ_{embed} = 1 - efficiency loss due to high occupancy

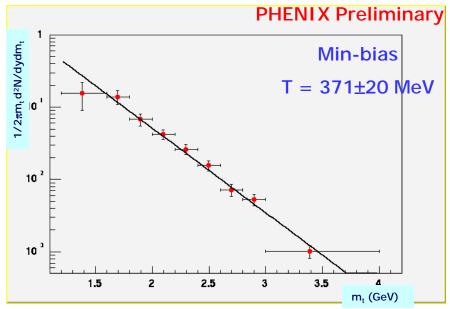
cf = Centrality fraction of the cross-section

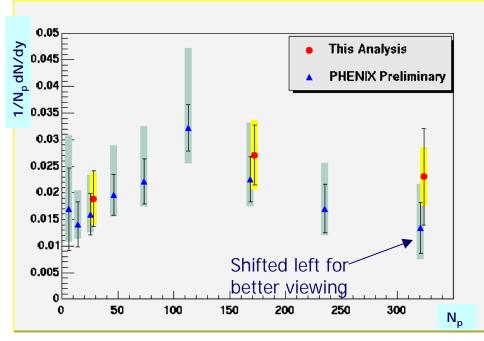
BR = Branching Ratio (0.49 for ϕ decaying into K⁺K⁻)

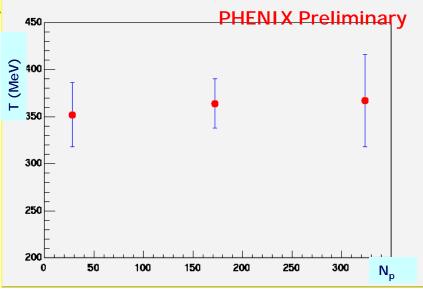

 $\Delta m_t = \text{width of the } m_t \text{ bin}$


Fitting Function:


$$\frac{1}{2\pi m_{t}} \frac{d^{2}N}{dm_{t}dy} = \frac{dN/dy}{2\pi T(m_{\phi} + T)} e^{-(m_{T} - m_{\phi})/T}$$






Summary on dN/dy and Inverse Slope Parameter

12 - - 10						A PHE	IIX Preliminary
-			Shifte	d left f	or		
8				viewii			<u> </u>
6			ıŢ				<mark> </mark>
4		I	,		ł		<u> </u>
-		1	1		I		1
2	ı I						
0	50	100	150	200	250	300	

Centrality	dN/dy±(stat) ±(syst) (This Analysis)	T (MeV)
0%-10%	7.46± 2.94±1.79	367 ±49
10%-40%	4.67±0.96±1.12	364±26
40%-92%	0.54±0.15±0.14	352±34
Min bias	2.35±0.38 ±0.54	371±20

Summary

- ϕ mesons are reconstructed via K⁺K⁻ channel for the Au-Au Collisions at $\sqrt{S_{NN}}$ =200GeV.
- \blacksquare m_t spectra of ϕ are studied for three centralities.
 - The spectra were fitted with an exponential and the φ yield and inverse slope parameters were extracted from the fit.
- Centrality dependence of yield is studied.
- The inverse slope parameters appear to be unaffected with the centrality.
 - The systematic error on the slope parameters are still under investigation.
- Inclusion of the higher statistics Electromagnetic Calorimeter is underway.