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Abstract

This note will describe the general design of the object-oriented PHENIX central arm global tracking
software.  The implementation for the creation of DSTs from the data taken during the summer 2000 RHIC
run will be described. This note addresses the general implementation strategies used and will not go into a
description of specific track models or their performance. The note includes and concludes with simple
suggestions to improve the hit association algorithms and reduce the need for DST after-burners.

I. Introduction

Global hit associations, defined as any association between hits or tracks of
different detectors to a single particle track, are performed in the PHENIX central arm
using an object-oriented design implemented with C++ within the PHOOL framework.
All software is written independently of ROOT.  This document will describe the details
of this design for analysis of the summer 2000 run data.  Described in this document are
the motivation of the design, the details of the specific classes that have been developed,
and how it all works together.  The performance of specific implementations will be
discussed in separate PHENIX notes. For more information and updates, please refer to
the Luxor web pages at http://www.phenix.bnl.gov/WWW/software/luxor/.

When approaching the design of an object-oriented system, care must be taken in
defining objects that are useful and efficient for the solution of the problem.  For the
problem of PHENIX global associations, the primary objects that are used are the
following:

1. A track model object that describes the shape of a track in space.
2. Geometry objects that describe the positioning of the detectors in space.
3. A "hit list" object that stores the hits from a given detector that are available

for association to a track.
4. Data Summary Tape (DST) objects that store the final association and

kinematics results.

PHENIX global reconstruction anchors itself upon these objects, with classes
built around them containing methods that manipulate the objects to solve the global hit
association problem, which is a daunting one in PHENIX central collisions.  Each of
these objects and the methods that use them will be described in subsequent sections.



Figure 1: A schematic diagram showing the relationships between global reconstruction procedures and
PHENIX reconstruction objects.

The procedure for performing PHENIX global hit associations is illustrated in
Figure 1.  The first step is to perform detector-specific reconstruction, whose output are
PHOOL-based "wrapped STAF" DST tables.  For this discussion, these tables can be
considered as objects (they have data members and methods to access them) which will
be referred to as "detector DST objects".  The specific DST objects in this category
include vertex and centrality information from the BBC, MVD, and ZDC; drift chamber
hits and tracks; pad chamber clusters; RICH PMT information; TEC tracks; TOF hits;
and EMCAL clusters.

Once detector-specific reconstruction is completed, a track model class can use
this information to construct PHENIX track model objects, referred to as PHTracks.  A
specific track model class can construct its track from any subset of the detector DST
objects.  For example, a track model can be based on drift chamber tracks as well as on
outer detector information such as TEC tracks. No matter how a PHTrack object is
constructed, the remainder of the global reconstruction operates in the same manner.  One
advantage of most track models is that they can obtain a prediction of the momentum of
the particle, which is initially done assuming that the particle is a pion. All track models
are required to perform projections to the other detectors, which are stored within the
PHTrack object prior to global hit association, by using the PHENIX Geometry objects.

Once all PHTrack objects are created and their projections determined, the global
hit association class can process them.  To facilitate this, a "hit list" class, called



cglHitList,  has been developed to help gather hit and track information and sort them
according to arm, phi angle, or z coordinate.  The output of the hit association is currently
the wrapped STAF tables dCglTrack, which contains the association pointers, and
dCglParticle, which contains the initial kinematics and particle ID information.

Following global hit association, it is then possible to perform a particle
identification pass followed by a second momentum reconstruction pass on tracks that
may not be identified as pions.  These steps will not be discussed further in this note.

II. Geometry Objects

IIa. The geo package

One of the most important aspects of any global reconstruction algorithm is the
handling of the geometry of the detectors being associated.  In order to facilitate this, the
PHENIX geometry objects were designed.  Initially, the possibility of using the CLHEP
geometry classes for our purposes was investigated, however not all of the necessary
functionality was available. Given that fact along with concerns about the support of the
CLHEP package on the short time-scale over which we needed its functionality prior to
data taking, it was decided to write a geometry package specifically for PHENIX, called
the geo package. Even though the geo package is PHENIX-based, it is written generally
enough for any purpose.  All geometry in the global hit association is defined in terms of
the PHENIX geometry objects, which include points (PHPoint), cylinders (PHCylinder)
and cylindrical sections (PHCylinderSection), vectors (PHVector), angles (PHAngle),
reference frames (PHFrame), line segments (PHLine), planes (PHPlane) and planar
sections (PHPanel), spheres (PHSphere) and spherical sections (PHSphereSection), lists
of coordinates called poly-lines (PHPolyLine), and rotation matrices (PHMatrix).
Manipulations upon a single geometry object by itself are included in that objects
methods.  However, methods that take input from more than one type of geometry object
are included in a singleton class called the PHGeometron.  This includes operations such
as calculating the intersection point of a line and a plane.

Since the PHENIX geometry objects are C++ objects, it is possible to store them
directly into the Objectivity database.  The advantage here is that the reconstruction
software can read these objects directly from the database. Alignment software could
read a default geometry from the database, determine the best geometrical alignment, and
then update the objects directly in the database for immediate use by the reconstruction
software.  At the time of this writing, a complete implementation of this is still under
construction, yet well underway. It would be highly desirable to have a direct connection
between the geometry objects stored in the database and the geometry used by the
simulation, however work in that direction has not yet started.

More information on the geometry package is available on the web at
http://www.phenix.bnl.gov/WWW/software/luxor/geometry.html.

IIb. The cglDetectorGeo class

A class, called cglDetectorGeo, is used in the reconstruction chain as a librarian,
or clearing house, for detector geometry information.  It serves to gather the geometry



information into a single storage place for use by the track models and global hit
association.  The class contains methods that extract the geometry from information
stored in the database after alignment corrections have been applied (preferred).
However, methods are also supplied to generate a default geometry matching the
GEANT geometry (note that this match is not coupled to GEANT in any way, but can be
controlled by run-time input parameters at the macro level).  The cglDetectorGeo class
can be defined as an object containing the necessary geometry that is stored in the
PHOOL node tree.

The data members of cglDetectorGeo are designed to define the entire geometry
needed for track models and hit association.  The data members are described below:

• xyz0: A PHPoint object defining the PHENIX origin reference coordinate.
• xyz0East: A PHPoint object defining the PHENIX east arm origin reference

coordinate. coordinate.
• xyz0West: A PHPoint object defining the PHENIX west arm origin reference

coordinate.
• phenixFrame: A PHFrame object that defines the PHENIX reference

coordinate system.
• eastFrame: A PHFrame object that defines the east arm reference coordinate

system.
• westFrame: A PHFrame object that defines the west arm reference coordinate

system.

The following data members are 2-D arrays indexed by arm and sector number:
• pc1Sectors: Array of PHPanel objects that define the PC1 sectors in space for

each arm.
• pc2Sectors: Array of PHPanel objects that define the PC2 sectors in space for

each arm.
• pc3Sectors: Array of PHPanel objects that define the PC3 sectors in space for

each arm.
• tecSectors: Array of PHPanel objects that define the TEC sectors in space for

each arm.
• tofSectors: Array of PHPanel objects that define the TOF sectors in space for

each arm.
• pbscSectors: Array of PHPanel objects that define the PbSc sectors in space

for each arm.
• pbglSectors: Array of PHPanel objects that define the PbGl sectors in space

for each arm.
• pc1Frame: Array of PHFrame objects defining the reference coordinate

system for each PC1 sector in each arm.
• pc2Frame: Array of PHFrame objects defining the reference coordinate

system for each PC2 sector in each arm.
• pc3Frame: Array of PHFrame objects defining the reference coordinate

system for each PC3 sector in each arm.



• tecFrame: Array of PHFrame objects defining the reference coordinate
system for each TEC sector in each arm.

• tofSectorsFrame: Array of PHFrame objects defining the reference coordinate
system for each TOF sector in each arm.

• tofPanels: Array of PHFrame object defining the reference coordinate system
for each TOF panel in each arm.

• pbscFrame: Array of PHFrame object defining the reference coordinate
system for each PbSc sector in each arm.

• pbglFrame: Array of PHFrame objects defining the reference coordinate
system for each PbGl sector in each arm.

These data members are 1-D arrays indexed by arm number:
• dchArm: PHCylinderSection objects that define the drift chamber geometry

for each arm.
• crkArm: PHCylinderSection objects that define the RICH geometry for each

arm.
• dchFrame: PHFrame object defining the reference coordinate system for each

drift chamber arm.
• crkFrame: PHFrame object defining the reference coordinate system for each

RICH arm.

These data members point to subsystem geometry objects for subsystems that are
handling their geometry according to PHENIX specifications:
• PHpadDetGeo: The pad chamber detector geometry definition object.
• TofDetGeo: The TOF detector geometry object.

III. The PHENIX Track Object

The track object, called a PHTrack, represents the shape of the track in space.
The shape of a track is determined by a track model, which is implemented as a class that
inherits from the PHTrack base class.  The job of a track model is to reconstruct one
PHTrack object for each particle track in the spectrometer.  The track model can use
whatever information is available from the detectors to construct PHTracks.  The track
model must also provide methods which intersect the track with each detector, and
methods which define the shape of the track in terms of a PHPolyline geometry object for
event display.

Below is a more detailed description of the PHTrack data members:
- polyline: This is a PHPolyLine geometry object (a list of 3-D points in space)

which describes the shape of the track in space.
- trackIndex: This is a pointer to the dCglTrack object which stores the

association information.  This is usually filled by the global hit assocation
algorithm rather than the track model.

- arm: The arm number (0 = East arm, 1 = West arm)



- ifIntersect: This is a PHPointerList of PHBoolean quantities that specify
whether or not the track model can intersect the track object with a given
detector.  This list is always the length of the number of detectors that are in
the intersection list, and the quantity is set if there was a successful
intersection. The ordering of this list is always the following: 0 = Vertex
(closest approach to the vertex in the x-y plane), 1 = drift chamber, 2 = PC1, 3
= PC2, 4 = PC3, 5 = RICH, 6 = TEC, 7 = TOF, 8 = PbSc, 9 = PgGl.

- projections: A PHPolyLine object which contains the projection coordinates
of the track at a given subsystem. This only has entries in the list if there was
an intersection. However, the list is filled in the same order as the ifIntersect
list. If ifIntersect for a given detector is false, then the projections list is not
filled for that detector. In order to determine which detector the projection
corresponds to, you must first query the ifIntersect list.

- projErrors: A PHPolyLine object that contains the estimated errors of the
projections at each successful intersection point of the track object with the
detectors. These errors are 1 standard deviation errors in each Cartesian
direction. The estimation of these errors are used by the global hit association
to determine the weight of an intersection (or a road width) for the association.
In this way, momentum-dependent weights can be applied. The ordering of
the errors in projErrors is identical to that of the projections object.

- directions: A PHPointerList of PHVector objects which contain the track
vector at each successful intersection point of the track object with the
detectors.  The ordering of the list is identical to that in the projections data
member.

Below is a detailed description of the PHTrack virtual methods (that is, the track
model should supply these methods, although the base class provides default methods for
some functions):

Each projectTo... method returns a PHBoolean indicating whether or not there
was an intersection.  Intersections are only allowed to occur within the arm
containing the track.
- projectToVertex: Distance-of-closest-approach projection to the z-axis.
- projectToDch: Projection to the reference cylinder of the drift chamber.
- projectToPc1, projectToPc2, projectToPc3: Projection to the pad chambers.
- projectToCrk: Projection to the reference sphere of the RICH.
- projectToTec: Projection to the TEC.
- projectToTof: Projection to the TOF.
- projectToPbSc, projectToPbGl: Projection to the EMCAL.

The default algorithm for the next 3 methods is to intersect the polyline in
PHTrack with the input geometry object.
- projectToPlane: Projection to an arbitrary PHPlane.
- projectToCylinder: Projection to an arbitrary PHCylinder.
- projectToSphere: Projection to an arbitrary PHSphere.



- predictMomentum: Most track models can return an estimate of the track
momentum vector.

The default algorithm for the next 3 methods is to calculate the path length
defined in the polyline in PHTrack.
- pathLengthToCrk, pathLengthToTof, pathLengthToEmc: Calculate the total

path length from the collision vertex to the given detector.

- calcPolyLine: Fill the polyline object.

- callProjections: Calls all detector-based projectTo methods at once.

It is highly desirable to eventually write out PHTrack objects directly to the
DSTs, although they are stored in the PHOOL node tree.  This just needs a small amount
of work for someone to test and possibly tweak the streamer methods for PHTrack.  The
technique used within the header package can be applied here to keep ROOT out of the
compiled code by providing a buffer.  However, in the meantime, a wrapped STAF
object called dPHTrack is filled and stored in the DSTs instead.  dPHTrack contains all
of the information in PHTrack objects. Unfortunately, this information is currently and
unnecessarily being stored twice in the DSTs, since it is also present in the dPhDchTrack
object when the PHDchTrack track model is used.

IV. Hit List Objects

Much of the work to be performed in any hit association algorithm of the scope
needed for the PHENIX central arms is concerned with hit and track bookkeeping.  Many
of the algorithms that must be applied can be sped up significantly if they operate on
ordered sets of hits or tracks.  Many of these generic bookkeeping functions have been
gathered together in a single class for use within PHENIX hit association algorithms.
The name of this class is cglHitList.  Generally, a cglHitList object is simply a list of
coordinates. The class provides specific constructors for many of the central arm
detectors including drift chamber tracks, pad chamber clusters, TEC tracks, TOF hits, and
EMCAL clusters.  The constructors can be specified to create a hit list from one or both
arms.  Once a cglHitList object is created, the sorting and searching methods included in
the class, which are described below, can be applied.

The data members of a cglHitList object are as follows:
- n: The number of entries in the list.
- sortflag: Specifies whether or not the list is ordered.  This is set to 0 if there is

no ordering, 1 if it is sorted in order of increasing phi, and 2 if it is sorted in
order of increasing z.

- detid: The detector type identifier.  The key is 0 = drift chamber, 1 = PC1, 2 =
PC2, 3 = PC3, 4 = RICH, 5 = TEC, 6 = TOF, 7 = PbSc, 8 = PbGl, -1 = other.

- arm: The arm number for the hits.  Set to -1 for no specification.  Set to 2 for
both arms.  Set to 0 for the East arm, and 1 for the West arm.



- index: An array of pointers to the DST entry for that detector from which the
coordinate information was obtained.

- coord: An array of PHPoint objects containing the coordinates for easy
access.

- Verbose: Verbosity level for debugging.  0 is no output to the screen.

The methods provided with cglHitList include the following:
- Print: Print the entire list in Cartesian coordinates.
- PrintCyl: Print the entire list in Cylindrical coordinates.
- SortInPhi: Sort the list in order of increasing phi coordinate.
- SortInZ: Sort the list in order of increasing z coordinate.
- Remove: Remove a specific entry in the list.
- Clear: Remove all entries in the list.
- Add: Add a coordinate in a specific entry in the list.
- Append: Add a coordinate to the end of the list.
- ZRange: Return all entries that are within a specified z range.
- PhiRange: Return all entries that are within a specified phi range.
- PhiZRange: Return all entries that are within a specified z-phi window.
- PhiClose: Return the entry of the closest hit in phi to the input point within a

specified z-phi window.
- ZClose: Return the entry of the closest hit in z to the input point within a

specified z-phi window.
- PhiZClose: Return the entry of the closest hit to the center of a specified z-phi

window in 2-D.

You might notice that this looks a lot like something that could be implemented
with STL, however the time pressure for the completion of this class prior to PHENIX’s
first data precluded that possibility due to lack of training time.

V. Global Hit Association

This section describes the algorithm for the cglHitAssociate class used for DST
production for the Run 2000 data.

The algorithm used in cglHitAssociate is very simple, with most of the work done
by the track models and the cglHitList class. The entirety of the algorithm is contained
within the event method, which operates on all PHTrack objects for an event in a single
pass.

First, the PHOOL node tree is searched for the data that is necessary for hit
association. If data is missing, the event method will terminate with an error. The output
DST information in dCglTrack, dCglParticle, and dPHTrack are initialized for the event.
    Each arm is looped over. Tracking is done on an arm-by-arm basis. For each arm,
cglHitList objects are constructed for each detector. These lists are sorted in order of
increasing phi after they are constructed.
    Every reconstructed drift chamber track is looped over. Hit association is
performed on a track-by-track basis. A pointer to the PHTrack object (keyed by track



model using the TrackModelFlag input parameter) is created. All projection information
and track model methods are accessed via this pointer for the hit association to this track.
It is assumed that there is a one-to-one correspondence between drift chamber tracks and
PHTrack objects. If this assumption is ever broken, the code will need to be modified
accordingly. Only drift chamber tracks within the current arm that pass the cut specified
by the dchQualityFlag input parameter are considered for hit association.

Each detector is looped over using the following indexing scheme: 0=vertex,
1=dch, 2=PC1, 3=PC2, 4=PC3, 5=RICH, 6=TEC, 7=TOF, 8=PbSc, 9=PbGl. A detector
is only considered for association if the input parameter UseFlag for that detector is set.

For each detector, the track model is queried for the projection point, projection
error, and projection vector at that detector. Using the projection point and error, a
window about the projection is formed based upon the input parameters PhiWidth,
ZWidth, MinPhiWidth, and MinZWidth. The cglHitList object for that detector is then
used to determine the closest hit within the window to the projection point. If there is a
valid hit to associate, the pointer to its DST object is stored in dCglTrack. The z
information may not be used to determine the closest hit if specified by the PhiRoadOnly
and MaxDchQuality input parameters. When associated a TEC track, an added cut on the
slope difference is applied, as specified by the TECSlopeCut input parameter.

Once all hit association is complete for a given input drift chamber track, the rest
of the known quantities in dCglParticle and dPHTrack are filled. The momentum
prediction from a track model is filled if the PredictMomentum input parameter is set.

There are some improvements that can be made to immediately increase the
efficiency of this algorithm.  They include  the following:

- The RemoveHits functionality has not yet been tested. First, does it work?
Second, does it improve performance (you can use the cgeEvalTrack class for
a quick look)?

- Currently, only the closest hit for any given detector is associated to the drift
chamber track. Every detector is treated completely independently. An
optimization could easily be performed with little code modification as
follows: 1. Use cglHitList to make a list of every hit for every detector within
the windows. 2. Write a method(s) that fits or optimizes these collections of
hits (e.g. a linear chi-square test on the outer detector hits) to find the best set
for storage in dCglTrack. 3. Evaluate the performance using the cglEvalTrack
class. A modification here may be more desirable considering CPU time and
ease-of-use than the proliferation of DST after-burners seen in PHENIX
analysis software.

- Currently, only one set of hits is stored for every drift chamber track. It may
be desirable for some analyses to make these decisions later (maybe after
some PID comparisons are applied). Install a redundancy depth to store a
maximum number of hit sets (maybe ordered in confidence) to the DST
information. Be careful though, some analyses may be assuming the current
one-to-one correspondence between drift chamber and global tracks. Make
sure you let everyone know well in advance that you are installing this feature.
Again, installation of this functionality here may be more efficient and easier
to use than a DST after-burner.



- The RICH software has been implemented in a way that ignores CPU-time
and manpower efficiency arguments and includes independently developed
global associations. Due to this implementation, many procedures are being
repeated (and rewritten) within a single PHENIX reconstruction chain.
Uniformity in this regard may be highly beneficial to PHENIX data analyses.

- Most track models are currently making no attempt to return errors at the
detector projection points. Tracking model authors should note that this is a
desirable output so that momentum-dependent windows, rather than the
default flat windows, can be defined for hit association. If the errors appear,
implementing this is automatic - no need to even change the input paramaters
or the software. This could easily increase the association efficiency.

- The task of optimizing the input parameters to cglHitAssociate to maximize
efficiency has not yet been tackled. With very little work, the performance of
this class could be increased greatly.


