Azimuthal anisotropy measurements from cumulants in PHENIX

Michael Issah SUNY Stony Brook

for the PHENIX Collaboration

Outline

- Introduction to the cumulant method
- Simulation results
- Experimental results: Au+Au and p+p
- Conclusions and outlook

Measuring azimuthal anisotropy using cumulants

- Cumulants of multiparticle correlations are related to azimuthal anisotropy (N.Borghini, P.M. Dinh, J.-Y Ollitrault Phys.Rev.C 63, 054906 (2001); Phys.Rev.C 64 054901 (2001))
- Second order cumulant

$$\langle \langle e^{2i(\phi_1 - \phi_2)} \rangle \rangle \equiv C_2 \{2\} = v_2^2$$
harmonic order

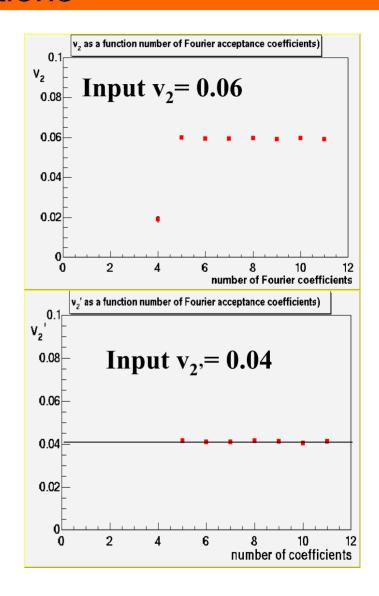
- Cumulants for the integral and differential anisotropy generated by generating functions
- Expansion of the average of the generating function over events defines the cumulants, which are related to azimuthal anisotropy

Acceptance corrections

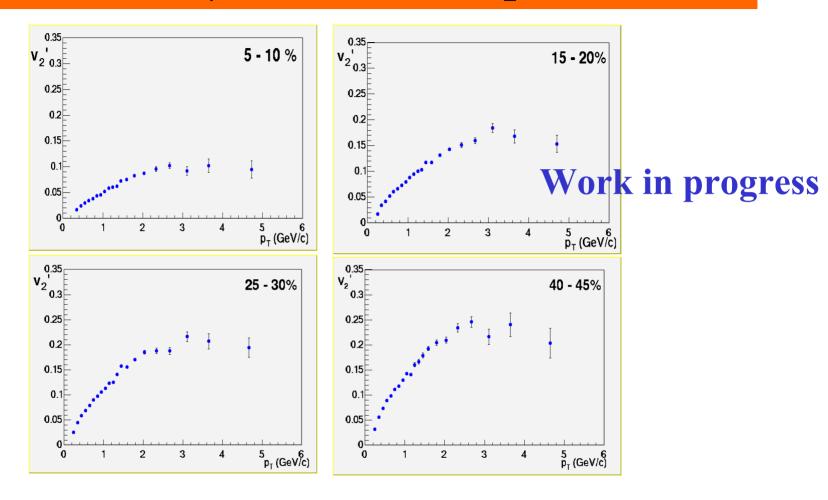
 Acceptance/efficiency corrections implemented by a Fourier fit of particle distributions

$$A\left(\phi\right) = \sum_{k=-\infty}^{k=+\infty} a_k e^{ik\phi}$$

- Non-isotropic acceptance
 - => mixing of different harmonics
 - => modified relations between cumulants and v₂
- 2nd order cumulant $c_2 \{2\} = v_2^2$ (for perfect acceptance) becomes

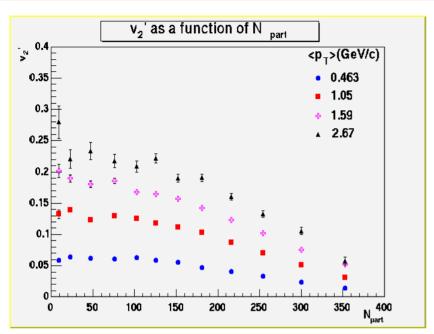

$$c_{2} \{2\} = k_{1}v_{1}^{2} + k_{2}v_{2}^{2}$$
 (for non-isotropic acceptance)

where k_1 and k_2 are functions of the extracted Fourier coefficients a_k


- Similarly $c_1 \{2\} = k_1 v_1^2 + k_2 v_2^2$
- Combining the equations above gives v_2 in terms of $c_1\{2\}$ and $c_2\{2\}$

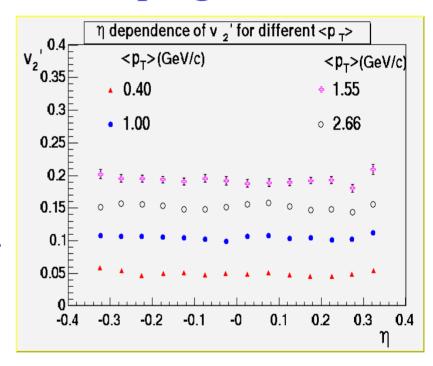
Simulations

- Monte Carlo simulations performed
- Events were generated in which particles were sampled at random with given v₂
- Sampling weighted by a probability function extracted from measured azimuthal distributions
- Results show the reliability of the method when applied to PHENIX



p_T dependence of v₂

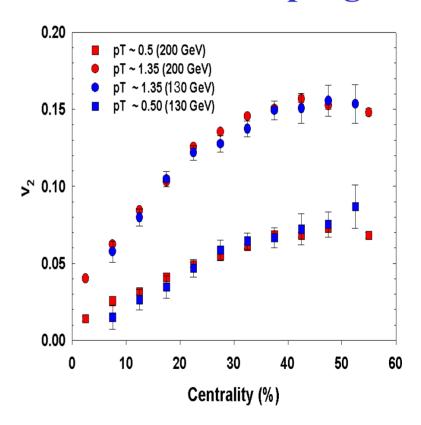
- Analysis performed with 5% centrality bins
- Results compare favorably with other analysis methods


Centrality and pseudo-rapidity dependence of v₂

 v_2 as a function of N_{part} for different $\langle p_T \rangle$

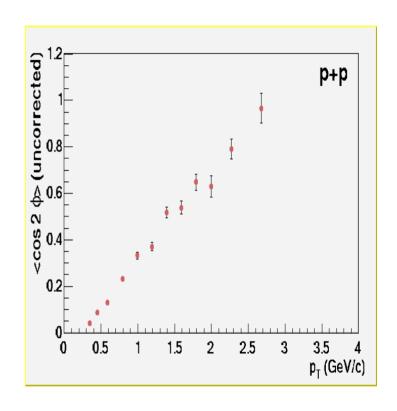
Trend appears to be different at high
 for peripheral collisions

Work in progress



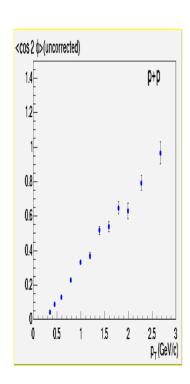
 v_2 ' does not vary over the η range of the detector

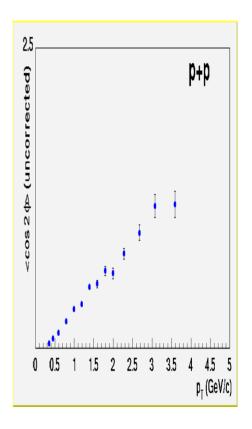
Comparison between v_2 at $\sqrt{s_N} = 130$ GeV and 200 GeV


- v₂ similar over a broad range of centralities at 130
 GeV and 200 GeV
- Energy dependence of v₂
 can be studied in detail
- •Results indicate no significant cannue of v₂ with beam energy/initial energy density

Work in progress

Azimuthal anisotropy from p+p at $\sqrt{}$ =200 GeV


- ~44 million p+p events analyzed
- Azimuthal anisotropy increases with p_T to large values
- Analysis on Pythia events indicates similar trend



Work in progress

Conclusions and outlook

- Cumulant method: alternative way to measure azimuthal anisotropy
- Method has been successfully applied in PHENIX
- Acceptance/efficiency corrections implemented easily and are under control
- \triangleright Enables a detailed analysis of v_2 as a function of p_{T_1} , centrality and pseudo-rapidity
- Results compare well with other methods
- Fourth-order cumulants lead to a removal of direct (non-flow) correlations=>dependent on statistics (are being studied, especially in cases where statistics are not a limitation (HIJING, Pythia)

