(Jet) Physics with Calorimetry in

Michael P. McCumber (University of Colorado)

PHENIX Decadal R&D Workshop Brookhaven National Laboratory 14 December 2010

Jet Energy Loss

Jets have become a primary channel for studying energy loss...

 $A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$

Jet Observables: Rate

Reconstructed jets are a high rate, information rich observable...

Medium interactions broaden jets and reduce their multiplicity...

3

Jet Observables: Shape

Reconstructed jets are a high rate, information rich observable...

Medium interactions with the medium modify the shape of the jet

Jet Observables: Fragmentation

Reconstructed jets are a high rate, information rich observable...

Medium interactions alter the fragmentation pattern of jets

Additional Di-jet Observables

Reconstructed jets are a high rate, information rich observable...

Jet Measurements

Jet Measurements

unfolding uncertainties

Needs: A Large Uniform Acceptance...

Needs: A High Rate...

from SuperDAQ

Event Background in Jets

Pythia jets embedded into HIJING

Event Background in Jets

Pythia jets embedded into HIJING

Event Background in Jets

Parton-Medium Interactions

How do pQCD interactions at high scale gives over to collective interactions with a bulk medium?

Initial pT set the scale of the interactions

Need: A large dynamic range reaching both low and high Q²

Could be achieved at RHIC

Challenging at the LHC due to the aforementioned backgrounds

The Trouble with Tracking

As such cuts discarding event containing large momentum hadrons are common place

How: Via Energy Flow... or Tracking

Energy reconstruction through calorimetery

Can perform better at large momentum than tracking

for instance:

event cuts can exclude measurement of large momentum fragmentation functions

white areas excluded with tracking

Calorimetric jets via EMCal + HCal

Calorimetric jets via EMCal + HCal

Additional jet channel via EMCal + Tracking

(+) Open heavy flavor identification

Summary of Design

- Uniform large acceptance
- High rate capabilities
- Precision inner and outer tracking
- Full coverage hadronic calorimetry
- Electron identification over a broad momentum range
- Displaced vertex tagging of heavy flavor decays

How: Via Energy Flow...

Energy reconstruction through calorimetery

Calorimeter smearing alone

How: Via Energy Flow...

Energy reconstruction through calorimetery

Calorimeter smearing alone

EMCal + HCal(45%) true p_T¹⁰ 0.3 0.25 60 50 0.2 40 0.15 30 0.1 20 0.05 10 0 80 20 50 70 10 30 60 40 meas p_{τ}^{jet} (horizontal normalized to eff)

Event background dominates the resolution

+ event background smearing

