Azimuthal anisotropy with respect to the reaction plane in √s_{NN} = 200 GeV d+Au collisions at RHIC – PHENIX

Hiroshi Masui for the PHENIX collaboration University of Tsukuba Azimuthal Anisotropy in non-central collisions

- Initial anisotropy in coordinate space momentum space in the final state.
- Low p_T
 - Hydrodynamical behavior
 - Pressure gradient
- High p_T
 - Parton energy loss in the medium.

Recent result in $\sqrt{s_{NN}} = 200 \text{ GeV}$ Au+Au collisions

- $p_T < 2.0 \text{ GeV/c}$
 - $v_2(\pi) > v_2(K) > v_2(p)$
 - Consistent with calculation of hydrodynamical model .
- $p_T > 2.0 \text{ GeV/c}$
 - $v_2(p) > v_2(\pi), v_2(K)$
 - Clear departure from hydrodynamical behavior is observed.

Scaling with the n_{quarks}

- The quark coalescence model predict a simple scaling behavior. [D. Molnar and S. Voloshin, nucl-th/0302014]
 - Scaling both v₂ and p_T with the number of quarks.
- An indication that v₂ of measured hadrons is already established in a quark-matter phase.

High $p_T v_2$

- High p_T v₂ is finite.
 - Jet should be correlated with the reaction plane.

Motivation

- v₂ in Au+Au collisions has been measured.
 - Different behavior for different particle species.
 - Finite v_2 @ high p_T .
- It is important to measure azimuthal anisotropy in d+Au collisions (also p+p) for systematic checks.

PHENIX experiment

- Beam Beam Counter
 (BBC) |η| ~ 3 4
 - 64 PMT in each counter.
 - Determine the reaction plane

Method "Reaction plane" in d+Au collisions

- Event anisotropy (ex. Jet) is observed.
- Assume reaction plane from following equation.

$$\tan(\Psi_{measured}) = \frac{\sum N_{ch} \sin(\phi_{PMT})}{\sum N_{ch} \cos(\phi_{PMT})}$$

 Ψ_{measured} : measured azimuthal angle of reaction plane

N_{ch}: multiplicity

 ϕ_{PMT} : azimuthal angle of each PMT

Method azimuthal anisotropy

$$\frac{dN}{d\phi} = N(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi)]) \qquad (n = 1, 2, ...)$$

φ : azimuthal angle of each PMT (BBC)

Ψ: azimuthal angle of reaction plane

v_n: anisotropy parameter

$$v_n = \frac{v_n^{measured}}{resolution}$$

resolution =
$$\langle \cos[n(\Psi_{measured} - \Psi_{true})] \rangle \sim \sqrt{\langle \cos[n(\Psi_A - \Psi_B)] \rangle}$$

 $\Psi_{A,B}$: reaction plane determined for each sub sample.

Comparison of Reaction plane

- Clear correlation can be seen in Au+Au collisions.
- d+Au and p+p resolution is less than Au+Au

$<\cos(\Psi_A - \Psi_B)>$

The d+Au result is consistent with the Au+Au and p+p.

Summary and Outlook

- Analysis of azimuthal anisotropy in d+Au collisions has been started.
- The result of d+Au is consistent with the Au+Au and p+p.
- Forward calorimeter might be useful to determine the reaction plane and improve resolution.

Back up

Charged hadrons vs neutral pion

09/11/2003

Hiroshi Masui JPS meeting