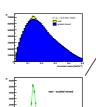
PHENIX

Comparison of two measurements of neutral pions within the PHENIX -Experiment

Westfälische-Wilhelms-Universität

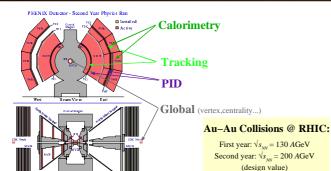

• Christian Klein-Bösing, IKP Münster, for the PHENIX-Collaboration

Motivation for measuring π^0 's

- \bullet Studying $\pi^{\scriptscriptstyle 0}$ production in heavy ion collisions
- \bullet Suppression at high $\boldsymbol{p}_{\scriptscriptstyle T}$ suggested as quark
- gluon plasma signature ("jet quenching")
 Comparison of central and peripheral
- Comparison to expectation from pp
- π° s main source of background γ's for direct photon measurement

HOWTO measure π⁰'s

- Via 2γ-decay branch
- Reconstruction of π⁰ invariant mass (134,98 MeV) $m_{inv} = \sqrt{2 E_{y_1} E_{y_2} (1 - \cos \theta_{12})}$
- In heavy ion collisions:
- √ Yield determination on statistical basis
- ✓ Large combinatorial background due to high multiplicities
- ✓ Background estimated by mixing γ-canditates from different events


Needed corrections to raw π^0 yield

- Detector geometry (acceptance)
- Detector response (efficiency)

 ✓ Intrinsic resolution
- ✓ Overlap effects in high
- multiplicity events

 ✓ Losses due to different particle identification cuts

Various sources of systematic errors

showers in Pb by different layers of

31.9 cn $5 \times 5 \times 37.5 \text{ cm}^2$ 8.1 / √E/GeV ⊕ 2.1 5.7 /√E/GeV ⊕ 1.55 Position resolution (mm)

generated by charged particles in electromagnetic or hadronic showers 2.8 cm 38 cm

 $4 \times 4 \times 40 \text{ cm}^3$

 $\begin{array}{l} 5.9 \ / \, \sqrt{\text{E/GeV}} \oplus \ 0.8 \\ 8.4 \ / \, \sqrt{\text{E/GeV}} \oplus 0.2 \end{array}$ Energy resolution (%)

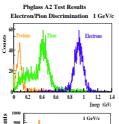
Two very different calorimeters, which offer the unique opportunity to perform essentially independent measurements of the same quantities

Interaction length

Single Module Size

Energy linearity

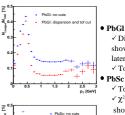
• PbGl


√ Absorption of Cherenkovlight √ High energetic particles produce showers closer to PMreadout

✓ Strong non-linearity • PbSc

✓ Scintillation light sampled over whole module

✓ Non-linearity less pronounced

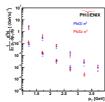

Hadron response

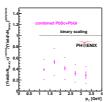
· Hadrons unwanted background

- for photon measurement • Response suppressed due to
- large interaction length Most hadrons only minimum
- ionizing particles (MIP's) PbGl: response further suppressed by Cherenkov–thresholds
- $\checkmark \pi^{\text{+/-}}\text{: } p_{\text{min}}^{} = 106 \; MeV/c$
- \sqrt{p} : $p_{min} = 715 \text{ MeV/c}$
- PbSc: scintillation light provides more direct measure of deposited

PID cuts

✓ Dispersion (hadronic showers show larger

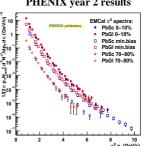

- lateral width) ✓ Tof-cut
- ✓ Tof-cut
 - √ χ² (deviation of shower profile from electromagnetic shape)


Analysis

- · Two independent teams
 - ✓ Different methods of yield extraction
- ✓ Different approaches for efficiency calculation
- Year 1, two different fast Monte-Carlo simulations for efficiency
- Year 2, additional efficiency calculation via embedding of simulated particles into real events

PHENIX year 1 results

E (GeV



- · Good agreement within systematic errors
- Combination weighted with errors
- Indication of ,jet quenching"?

• Phys. Rev. Lett. 88, 022301 (2002)

PHENIX year 2 results

See also parallel talk by David D'Enterria in session 1 on Saturday