

Hadron Production and Radial Flow in Au+Au Collisions at RHIC-PHENIX

Akio Kiyomichi (RIKEN) for the PHENIX Collaboration

Lake Louise Winter Institute 2005 February 20-26, 2005

PHENIX

Lake Louise Winter Institute, Feb.20-26, 2005

Space-Time Evolution of System at HI Collisions

Bjorken's Space-Time Picture

- Hadrons reflect the bulk property of created system and its evolution.
 - T_{ch} Chemical freeze-out : inelastic scattering stops ==> particle abundance determine
 - T_{fo} Kinetic freeze-out : elastic scattering stops ==> spectra shape determine
- High- p_T hadron carry information at the early stage of the system.

PH*ENIX What could we learn by Hadron measurements

- Soft process
 - Hydrodynamic Collective Expansion (radial flow)
 - Hadron spectra may fit by hydrodynamical model.
- Hard scattering
 - High- p_T hadron may interact with medium

Relativistic Heavy Ion Collider (RHIC)

Rur	n Year	Species	√s[GeV]	∫Ldt
01	2000	Au+Au	130	1μb ⁻¹
02	2001/200	2 Au+Au	200	24µb ⁻¹
1	A 100	p+p	200	$0.15 pb^{-1}$
03	2002/200	3 d+Au	200	2.74nb ⁻¹
	- 3 M 102	p+p	200	0.35pb ⁻¹
04	2003/200	4 Au+Au	200	241µb ⁻¹
	S. FALLER	Au+Au	62.4	9μb ⁻¹
05	2004/200	5 Cu+Cu	200	1 2

New machine at BNL First Heavy-ion Collider

- Operational since 2000
- 3.83 km, two rings
- 4 experiments

Species

- Au+Au, d+Au, p+p, Cu+Cu
 Luminosity
- Au-Au: 2 x 10²⁶ cm⁻² s⁻¹
- p-p : 2 x 10³² cm⁻² s⁻¹ (*polarized*)

Event Selection

Centrality	$\langle T_{\rm AuAu} \rangle$ (mb ⁻¹)		$\langle N_{\rm coll} \rangle$		$\langle N_{\text{part}} \rangle$				
0- 5%	25.37	+	1.77	1065.4	+	105.3	351.4	+	2.9
0-10%	22.75	\pm	1.56	955.4	\pm	93.6	325.2	±	3.3
5-10%	20.13	\pm	1.36	845.4	\pm	82.1	299.0	\pm	3.8
10-15%	16.01	\pm	1.15	672.4	\pm	66.8	253.9	±	4.3
10-20%	14.35	\pm	1.00	602.6	\pm	59.3	234.6	\pm	4.7
15-20%	12.68	\pm	0.86	532.7	\pm	52.1	215.3	±	5.3
20-30%	8.90	\pm	0.72	373.8	\pm	39.6	166.6	±	5.4
30-40%	5.23	\pm	0.44	219.8	\pm	22.6	114.2	\pm	4.4
40-50%	2.86	\pm	0.28	120.3	\pm	13.7	74.4	\pm	3.8
50-60%	1.45	\pm	0.23	61.0	\pm	9.9	45.5	\pm	3.3
60-70%	0.68	\pm	0.18	28.5	\pm	7.6	25.7	\pm	3.8
60-80%	0.49	\pm	0.14	20.4	±	5.9	19.5	±	3.3
60-92%	0.35	\pm	0.10	14.5	±	4.0	14.5	±	2.5
70-80%	0.30	\pm	0.10	12.4	\pm	4.2	13.4	\pm	3.0
70-92%	0.20	\pm	0.06	8.3	±	2.4	9.5	±	1.9
80-92%	0.12	\pm	0.03	4.9	\pm	1.2	6.3	\pm	1.2
60-92%	0.35	\pm	0.10	14.5	\pm	4.0	14.5	±	2.5
min. bias	6.14	\pm	0.45	257.8	\pm	25.4	109.1	\pm	4.1

Centrality selection:

- Use charge sum of Beam-Beam Counter (BBC) and energy deposit of Zero-degree calorimeter (ZDC) in minimum bias events.
- Extracted N_{coll} (# of binary collisions), N_{part} (# of participants), T_{AuAu}(nuclear overlap function) based on Glauber model.

Charged Hadron PID

- Detectors for hadron measurement.
 - DCH+PC1+TOF+BBC
 - $\Delta \phi = \pi/4, -0.35 < \eta < 0.35$
- Charged Hadron PID by TOF
 - 0.2< π < 3.0 GeV/c
 - 0.4< K < 2.0 GeV/c
 - 0.6< p < 4.5 GeV/c

p_T Spectra, mean p_T vs. N_{part}

PHMENIX

- Increase from peripheral to mid-central, and then saturate from mid-central to central for all particle species.
- Observed clear mass dependence.
- Indicative radial expansion. (consistent with hydro picture)

Central

- Low p₇ slopes increase with particle mass.
- Proton and anti-proton yields equal the pion yield at high p_{T} .

Peripheral

- Mass dependence is less pronounces.
- Similar to pp.

$\Rightarrow \frac{1}{m_T} \frac{dN}{dm_T} = A \int_0^R f(r) r dr m_T I_0 \left(\frac{p_T \sinh \rho}{T_{fo}}\right) K_1 \left(\frac{m_T \cosh \rho}{T_{fo}}\right)$

 I_0 , K_1 : modified Bessel function

- Phenomenological hydrodynamical model
- Local thermal equilibrium + collective expansion.
- Freeze-out temperature (T_{fo}) and radial flow velocity (β_T)
- Include resonance effect.

Fitting the p_T spectra

PHENIX Au+Au 200GeV:

- Most central: $T_{fo} = 108 MeV$, $<\beta_T > = 0.57$
- Peripheral: $T_{fo} = 168 MeV, <\beta_T > = 0.27$

Minimize contribution from hard process

- $-(m_{T}-m_{0}) < 1GeV$
- $\rightarrow \pi$: p_T < 1.2GeV/c,
- \rightarrow K : p_T < 1.4GeV/c,
- \rightarrow p : p_T < 1.7GeV/c

Simultaneous fit to spectra of π ,K,p $-T_{fo}$: 60~240MeV , **2**MeV each $-\beta_T$: 0.00~0.90, **0.01** each More fine mesh in small region: $-T_{fo}$: 90~130MeV , **1**MeV each $-\beta_T$: 0.70~0.82, **0.002** each

Centrality dependence of T_{fo} and $<\beta_T>$

- N_{part} dependence of expansion is observed:
 - @central: saturate
 - @peripheral : $N_{part} \rightarrow 0$, T_{fo} increase, $<\beta_T > \rightarrow 0$

Beam energy dependence

- Most central event of Au+Au or Pb+Pb.
- Radial flow:
 - Increases with beam energy
 - $<\beta_T > ~0.55$ at RHIC
- Temperature:
 - saturate from AGS,
 - 100~120MeV

Nuclear Modification Factor R_{AA}, R_{CP}

Qualify the # of binary collisions

$$R_{AA}(p_T) = \frac{\text{Yield}_{AuAu} / \langle N_{\text{coll}}^{AuAu} \rangle}{\text{Yield}_{pp} / \langle N_{\text{coll}}^{pp} \rangle} \approx R_{CP}(p_T) = \frac{\text{Yield}_{central} / \langle N_{\text{coll}}^{central} \rangle}{\text{Yield}_{peripheral} / \langle N_{\text{coll}}^{peripheral} \rangle}$$

- Total multiplicity : N_{part} scaling
 Low-p_T region (p_T < 2GeV/c)
- Jets: N_{coll} scaling
 - High- p_T in high energy collision.

Expected behavior:

• From N_{part} scaling at low- p_T to N_{coll} scaling at high- p_T region.

Central-to-Peripheral Ratio (R_{CP}) vs. p_T

Depend on particle species

- Stray off the hydrodynamical curve at high-pt.
- Proton, anti-proton: No suppression, N_{coll} scaling
- π: suppression

Theoretical explanations: hydro+jet model, quark recombination model

Hydro+Jet and Recombination

- Qualitative agreement in pion suppression and proton nonsuppression.
- Both model predict that proton suppress at ~6GeV/c.

- Results of identified charged hadron spectra.
 - Au+Au 200GeV: Phys.Rev.C69 034909(2004)
- Hydro-dynamical model fit to the spectra with resonance decay effect.
 - N_{part} dependence of expansion is observed
 - For the most central:
 - Au+Au 200GeV: $T_{fo} = 108MeV, <\beta_T > = 0.57$
- High- p_T hadron production
 - Observed strong pion suppression at high p_T in central.
 - No suppression for proton.

There are several theories and discussing.

High-p_T PID upgrade : Aerogel & MRPC-TOF

- PID beyond 5GeV/c.

Spare

Lake Louise Winter Institute, Feb. 20-26, 2005 **PH***ENIX RIKEF d+Au Collisions: R_{AA} vs. R_{dA} R_{dA} charged hadrons 1.8 d+Au neutral pions 1.6 1.4 d+Au 1.2 Initial State Effects Only 0.8E 0.6 Au+Au 0.4 0.2 Au+Au $\mathbf{0}$ Initial + Final State Effects 2 10 3 Phenix (d+Au) prl91,072303(2003) $\ p_{\rm T} \, (GeV/c)$

- π^0 and charged are largely suppressed in central Au+Au at high p_T.
- No Suppression in d+Au, instead small enhancement observed !
- d-Au results rule out CGC (initial sate effect) as the explanation for high p_T suppression of hadrons in AuAu central.

Baryon Anomaly at RHIC

p, pbar : No suppression, N_{coll} scaling at 1.5 GeV - 4.5 GeV π⁰: Suppression • Factor ~3 enhancement on both p/π and pbar/ π ratios in central Au+Au compared to peripheral Au+Au, p+p at Intermediate p_T .

• Peripheral Au+Au at high p_T : Consistent with gluon/quark jet fragmentation and IRS data.

Theory 1: Hydro + Jet Model

Hirano, Nara (Hydro + Jet Model) PRC69,034908(2004) [nucl-th/0307015]

- Explicit 3D Hydrodynamical calculations (including QGP in EOS)
- Tuned jet quenching effect to reproduce the suppression factor in π^0 data.
- Hydrodynamics can describe p_T spectra up to ~ 2 GeV/c.
- Jet contributions from 2 GeV/c.

Akio Kiyomichi [RIKEN]

PH**ENIX** Theory 2: Recombination Model Fries, Muller, Nonaka, Bass (Fragmentation/Recombination model)

$$\frac{dN_{\rm B}}{p_T dp_T} = C_{\rm B} \cdot w(p_T/3)^3$$

Quarks and anti-quarks recombine into hadrons locally "at an instant"

- qq̄ → Meson
- qqq → Baryon
- Thermal part (quark only) and power law tail (quarks and gluons) from pQCD.
- Modification of fragmentation function " $D_{i \rightarrow h}(z)$ " by energy loss of partons.
- Competition between recombination and fragmentations mechanism.
- Quark degrees of freedom play an important role.

 ϕ meson:

- Similar mass as proton.
- Followed the π^0 data points, not protons!

Model fit with resonance feed down

- 1. Generate resonances with p_T distribution determined by each combinations of T_{fo} , β_T .
- 2. Decay them and obtain p_{τ} spectra of π ,K,p.
- 3. Particle abundance calculated with chemical parameters

 T_{ch} = 177MeV, μ_B = 29MeV (200GeV), T_{ch} = 176MeV, μ_B = 41MeV(130GeV)

Ref: P.Braun-Munzinger et al, PLB518(2001)41.

4. Merge and create inclusive p_{τ} spectra. $\rightarrow \chi^2$ test

PHENIX

χ^{2} contours in parameter space \textbf{T}_{fo} and β_{T}

24

- Upper figure show the χ² test result of simultaneous fitting for most-central spectra.
- Lower figure show χ^2 contours for each particles.
- There are strong anticorrelation between T_{fo} and β_{T} .

PHENIX Experiment

