

Study of Identified Charged Hadron Spectra in Au+Au Collisions at √s_{NN}=200 GeV measured by RHIC-PHENIX Experiment

Akio Kiyomichi (RIKEN) for the PHENIX Collaboration

JPS meeting at Rikkyo University September 13, 2002

Motivation

What do we learn from hadron measurement

- Soft process (Characterize freeze-out)
 - p_T spectra
 - Hydrodynamic Collective Expansion
 - Thermal freeze-out temperature
 - Radial flow velocity

- Particle ratio

- Chemical freeze-out temperature
- Chemical potential
 - RHIC: $T_{ch} \sim 174 MeV$, $\mu_B \sim 46 MeV$ ($\sqrt{s_{NN}}$ =130 GeV)
 - SPS : $T_{ch} \sim 170 MeV$, $\mu_B \sim 270 MeV$
 - AGS : T_{ch} ~ 130MeV, μ_B ~ 500MeV

Hard process (Contain earliest stage of collision)

- Suppression of hadron yield at high p_{τ}
 - Parton energy loss in hot and dense matter.
 - Baryon number transport

Theory prediction

- Jets will loose its energy in the dense matter.
 - (u,d) quark jets likely produce a leading proton than antiproton.
 - Ratio decreases with pt.
 - Gluon jets produce the same number of proton and antiproton with softer distribution.
 - At high p_{τ} , most of antiproton from gluons, while proton from both valence quark and gluon fragmentation.
 - If gluon jets lose more energy, then ratio behavior modified.
- Baryon number will be transported via gluon junction
 - Baryon/meson ratio will give an information on baryon number transport.
 - π^+, π^-, π^0 strong suppression? p, p enhance?

PHENIX Detectors

- Au + Au at √s_{NN}=200 GeV
- p + p at √s_{NN}=200 GeV
- Acceptance:

- Δφ = 45 deg, Δη = 0.7 (±0.35)

- Detectors used in this analysis
 - Tracking Systems
 - Drift Chamber (DC)
 - Pad Chamber 1 (PC1)
 - PID Device
 - Beam-Beam Counter (BBC)
 - Time-of-Flight (TOF)
 - T0 counter (TZR) for pp run.

10⁵

10⁴

10³

10²

10

Ei O

• proton yield ~ pion yield at 2GeV for central.

Centrality dependence of $< p_T >$

- <p_T> increases with N_{part} and mass
 Consistence with radial expansion picture.
- Relative increase from peripheral to central greater for proton than for pion, kaon.

- Simultaneous fit in range (mT m0)<1GeV
- β_T increases from peripheral to mid-central (N_{part} < 150) and tends to saturate for central collisions.

Particle Ratio ($\pi^-/\pi^+, \kappa^-/\kappa^+$)

• No clear centrality and p_{τ} dependence.

Particle Ratio (**p/p**)

- No clear p_{τ} dependence for central.
- Decreasing for peripheral at p_{τ} >3GeV/c ?

Particle ratio for 0-5% central collision • $\pi^{-}/\pi^{+} = 1.02 \pm 0.02 \text{ (stat)} \pm 0.1 \text{ (sys)}$ • $\mathbf{K}^{-}/\mathbf{K}^{+} = 0.92 \pm 0.03 \text{ (stat)} \pm 0.1 \text{ (sys)}$ • $\mathbf{p}/\mathbf{p} = 0.70 \pm 0.04 \text{ (stat)} \pm 0.1 \text{ (sys)}$

Beam energy dependence

- No strong energy dependence in π^-/π^+ ratio.
- $\mathbf{K}^-/\mathbf{K}^+$ and \mathbf{p}/\mathbf{p} ratios increase from SPS and AGS.
- Comparison with Thermal model:
 - Baryon chemical potential: $\mu_{B} \sim 30 MeV$
 - not baryon free at mid rapidity.

p/π and p/π ratio

• proton yield is comparable with pion at 2GeV/c in central collision, less in peripheral.

Comparison with $\sqrt{s_{NN}}$ =130GeV

- Data compared to Year-1 PHENIX data.
- Similar behavior has been observed.
- Consistent within systematic errors.

Conclusion

- 1. Hydrodynamic Collective expansion
 - Indicate a strong collective expansion at central collisions.
 - $< p_T >$ increases with N_{part} and mass
 - Consistence with radial expansion picture.
 - Hydro-dynamical model fit to the spectra
 - T_{fo} = 110 ± 23 MeV, β_T = 0.7 ± 0.2
- 2. Chemical composition
 - Particle ratios in Au+Au collisions at 200GeV
 - No clear centrality and p_T dependence.
 - Particle ratio at 5% most central event
 - $\pi^{-}/\pi^{+} = 1.02 \pm 0.02 \text{ (stat.)} \pm 0.1 \text{ (syst.)}$
 - $\frac{K^{-}/K^{+}}{p/p} = 0.92 \pm 0.03(\text{stat.}) \pm 0.1(\text{syst.})$
 - Baryon chemical potential $\mu_{\rm R} \sim 30 {\rm MeV}$
- 3. Identified hadron yield at high p_{τ}
 - p/p ratio is almost flat up to 4GeV/c for central collision, decreasing for peripheral at p_{τ} > 3GeV/c.
 - proton yield is comparable with pion at 2GeV/c for central collision.
 - Hints on the effect of dense matter.
- Outlook
 - Minimize systematic uncertainty.
 - Comparison with p+p data.

Backup Slides

Spare

Event Selection

π^0 measurement

- Using Electro-magnetic Calorimeter
 - 1GeV/c< p_{τ} <10GeV/c for π^0
- Calculate γγ invariant mass spectra and subtract combinatorial background
- Efficiency is evaluated by embedding simulated π^0 into real event.
- Systematic Error
 - $-p_T$ independent: 9%
 - Overall: 20-30%

Centrality Dependence of Particle Yield

- Yield per pair N_{part} increases with N_{part} and mass
- Linear dependence on N_{part}
- Similar behavior 130GeV and 200 GeV

Motivation

What do we learn from particle ratio?

Soft process

- Chemical freeze-out Temperature T_{ch}
- Chemical potential $\mu_{\rm B}$, $\mu_{\rm s}$
 - SPS : T_{ch} ~ 170MeV, μ_B ~ 270MeV
 - AGS : T_{ch} ~ 130MeV, μ_B ~ 500MeV
- Degree of baryon stopping power.
- Hard process
 - Contain earliest stage of collision.
 - Parton energy loss in hot and dense matter.
 - pbar/p ratio decreases with p_T .
 - Jet quenching moves the pbar/p ratio even below the pp value.

Anti-particle/particle ratios at $\sqrt{s_{NN}} = 130 \text{GeV}$

• No clear dependence as a function of centrality and p_T .

- π^{-}/π^{+} @5%central = 0.98 ±0.02(stat.) ±0.08(syst.)
- K⁻/K⁺@5%central = 0.87 ±0.06(stat.) ±0.11(syst.)
- p/p @5%central = 0.70 ±0.04(stat.) ±0.07(syst.)

- No strong energy dependence in π^-/π^+ ratio.
- κ^{-}/κ^{+} and p/p ratios increase from SPS and AGS.
- Baryon density at RHIC is much less than AGS and SPS, but not baryon free at mid rapidity.
- Thermal Model calculation
 - P.Braun-Munzinger et al. Phys.Lett.B.518 41(2001)
 - T_{ch} ~ 174MeV, μ_B ~ 46MeV
 - Use result from RHIC four experiments.
- How about Au+Au 200GeV \rightarrow analysis is on going
 - Close to baryon free? Temperature?