

Hadron Production Ratio in Au+Au Collisions at RHIC-PHENIX

Univ.of Tsukuba: **Akio Kiyomichi** for the PHENIX Collaboration

> JPS meeting at Ritsumeikan University March 25, 2002

Contents

-Motivation

-Result of particle ratio in Au+Au at $\sqrt{s_{NN}} = 130$ GeV [Run-1]

-Status of hadron analysis in Au+Au at $\sqrt{s_{NN}} = 200 \text{GeV}$ [Run-2]

-Conclusion

Motivation

What do we learn from particle ratio?

Soft process

- Chemical freeze-out Temperature T_{ch}
- Chemical potential $\mu_{\rm B}$, $\mu_{\rm s}$
 - SPS : \mathbf{T}_{ch} ~ 170MeV, μ_B ~ 270MeV
 - AGS : T_{ch} ~ 130MeV, μ_B ~ 500MeV
- Degree of baryon stopping power.

Hard process

- Contain earliest stage of collision.
- Parton energy loss in hot and dense matter.
 - pbar/p ratio decreases with p_T .
 - Jet quenching moves the pbar/p ratio even below the pp value.

Akio Kiyomichi [Univ. of Tsukuba]

PHENIX Detectors

- Momentum resolution : δp/p = 0.6 % ⊕ 3.6% p [GeV/c] (Run1)
- TOF resolution : ~100 ps (Run1)
- Acceptance:

 $\Delta \phi = 45 \text{ deg}$ $\Delta \eta = 0.7 (\pm 0.35)$

Particle Identification by TOF

- We can see clear π ,K,p separation
- Particle separation
 - $\pi/\kappa < 2.0 \text{GeV/c}$
 - proton < 3.5GeV/c</pre>

PHENIX Identified Particle Spectra at $\sqrt{s_{NN}} = 130 \text{GeV}$

- Single particle spectra of pion, kaon, proton and their anti particles.
- Au+Au collisions at $\sqrt{s_{NN}} = 130 \text{GeV}$
 - Minimum bias data.

Anti-particle/particle ratios at $\sqrt{s_{NN}} = 130 \text{GeV}$

- No clear dependence as a function of centrality and p_T .
- $\pi^{-}/\pi^{+}@5$ %central = 0.98 ±0.02(stat.) ±0.08(syst.)
- K⁻/K⁺@5%central = 0.87 ±0.06(stat.) ±0.11(syst.)
- p/p @5%central = 0.70 ±0.04(stat.) ±0.07(syst.)

Beam energy dependence

- No strong energy dependence in π^-/π^+ ratio.
- $\mathbf{K}^-/\mathbf{K}^+$ and \mathbf{p}/\mathbf{p} ratios increase from SPS and AGS.
- Comparison with Thermal model:
 - Baryon chemical potential.: $\mu_B \sim 35 MeV \pm 10 MeV$
 - not baryon free at mid rapidity.
- Other Thermal Model calculation
 - P.Braun-Munzinger et al. Phys.Lett.B.518 41(2001)
 - $T_{ch} \sim 174 MeV$, $\mu_B \sim 46 MeV$
 - Use result from RHIC four experiments.
- How about Au+Au 200GeV → analysis is on going
 - Close to baryon free? Temperature?

Status of Run-2 Analysis

- Au+Au at $\sqrt{s_{NN}} = 200 \text{GeV}$
- ~92 million minimum bias events.
- DST production is on going. about 15M events are processed.
- π/κ separation ~ 2.0 GeV/c
- K/p separation ~ 4.0 GeV/c

Un-corrected p_T spectra

- Acceptance, efficiency and decay corrections are not applied.
- Enough statistics at high p_T region.
 - proton, pbar candidate @3.0GeV/c<p_T<4.0GeV/c
 - Run2 : ~5K count (in15M events) → ~30K in full event
 - Run1 : ~0.1K count
 - Increase the statistics by few hundred.

PHENIX

Hadron at high-p_T region

Conclusion

Particle ratios in Au+Au collisions at 130GeV

- No clear centrality and p_T dependence.
- Particle ratio at 5% most central event
 - $-\pi^{-}/\pi^{+} = 0.98 \pm 0.02 (\text{stat.}) \pm 0.08 (\text{syst.})$
 - $K^-/K^+ = 0.87 \pm 0.06(stat.) \pm 0.11(syst.)$
 - p/p = 0.70 ± 0.04(stat.) ± 0.07(syst.)
- Baryon density at RHIC is much less than AGS and SPS, but not baryon free at mid rapidity.
 - Thermal Model : $T_{ch} \sim 174 MeV$, $\mu_B \sim 46 MeV$

Outlook for Au+Au collisions at 200GeV

- Precise measurement of hadron yield and spectra.
- Hadron suppression at high- p_T .
- pbar/p ratio up to 4.0GeV/c.
- Comparison with p+p collisions at 200GeV.

PHENIX

JPS '02 @Ritsumeikan Univ. Mar. 25, 2002

Backup Slides

Spare

Motivation (Hard process)

Theory prediction

- (u,d) quark jets likely produce a leading proton than antiproton.
 - Ratio decreases with pt.
- Gluon jets produce the same number of proton and antiproton with softer distribution.
 - At high pt, most of antiproton from gluons, while proton from both valence quark and gluon fragmentation.
 - If gluon jets lose more energy, then ratio behavior modified.

Compare h^{\pm} and π^0

- Peripheral collisions
 ~ p-p scaled by <N bin coll> = 20 ± 6
- Central
 - Different shape for **h** and π^0
 - Below scaled p-p
 - <N bin coll> = 905 ± 96

PHENIX Jet Quenching via p_T distribution

- One straight way to see the effect
 - Extend the pt range helps!
 - May be difficult when the other effects involved

PHENIX Motivation (Soft process)

- Result from SPS and AGS
 - In agreement with predictions of a thermal model assuming chemical equilibration.
- Is the chemical equilibrium at RHIC energy?
 - If there, how about temperature and chemical potential.
- What do we learn from particle ratio?
 - Chemical freeze-out Temperature T_{ch}
 - Chemical potential μ_{B} , μ_{s}
 - Degree of baryon stopping power

Ratios contain basic information about collision dynamics

Particle-ratio

- What do we learn from particle ratio?
 - Chemical freeze-out Temperature T_{ch}
 - Chemical potential μ_B , μ_s
 - Degree of baryon stopping power

Ratios contain basic information about collision dynamics

Beam energy dependence

- No strong energy dependence in π^-/π^+ ratio.
- $\mathbf{K}^-/\mathbf{K}^+$ and \mathbf{p}/\mathbf{p} ratios increase from SPS and AGS.
- Baryon density at RHIC is much less than AGS and SPS, but not baryon free at mid rapidity.
- Thermal Model calculation
 - P.Braun-Munzinger et al. Phys.Lett.B.518 41(2001)
 - $T_{ch} \sim 174 MeV$, $\mu_B \sim 46 MeV$
 - Use result from RHIC four experiments.
- How about Au+Au 200GeV \rightarrow analysis is on going
 - Close to baryon free? Temperature?

Centrality Selection

- Use combination of BBC charge and ZDC energy.
- Extract N_{part} based on Glauber model.