

Radial Flow Study from Identified Hadron Spectra in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Akio Kiyomichi (RIKEN) for the PHENIX Collaboration

DNP03 meeting at Tucson November 1, 2003

- Identified charged hadron spectra at RHIC
 - p_T spectra : Having the entire history of dynamical evolution of the system.
 - $< p_T > vs.$ particle mass, centrality.
 - Centrality dependence of spectra shape.
 - Freeze-out temperature and expansion velocity.
- In this presentation:
 - Result of identified charged hadron p_T spectra in Au+Au collisions at √s_{NN} = 200 GeV from PHENIX.
 PHENIX Collaboration S.S.Adler et al., accepted to PRC, nucl-ex/0307022
 - Freeze-out temperature and expansion velocity based on the hydro dynamical model (radial flow).

PHENIX Charged Hadron PID

- Detectors for hadron measurement.
 - DCH+PC1+TOF+BBC
 - $\Delta \phi = \pi/8$, -0.35 < η < 0.35 $\delta p / p \approx 0.7\% \oplus 1.0\% \times p \text{ (GeV/c)}$
- Charged Hadron PID by TOF.
 - 0.2< π < 3.0 GeV/c ,
 - 0.4< K < 2.0 GeV/c,
 - 0.6< p < 4.5 GeV/c.

DNP03 meeting @Tucson Nov. 1, 2003

PID p_T Spectra

DNP03 meeting @Tucson Nov. 1, 2003

- Increase from peripheral to mid-central, and then saturate from mid-central to central for all particle species.
- Observed clear mass dependence.
- Indicative radial expansion. (consistent with hydro picture)

Blast-wave model Parameterization

$$\frac{1}{m_T} \frac{d\mathbf{N}}{dm_T} = A \int f(\xi) \xi d\xi m_T \mathbf{I}_0 \left(\frac{p_T \sinh \rho}{T_{fo}}\right) \mathbf{K}_1 \left(\frac{m_T \cosh \rho}{T_{fo}}\right)$$

Parameters: $\beta_t(\xi)$ normalization A $f(\xi)$ freeze-out temperature T_{fo} surface velocity β_{t} ξ ξ integration variable linear velocity profile $\beta_t(\xi) = \beta_t \xi$ $\xi \leftrightarrow radius r$ surface velocity β_t = r/Raverage velocity $<\beta_t>=2/3 \beta_t$ definite integral from 0 to 1 boost $\rho(\xi) = \operatorname{atanh}(\beta_t(\xi))$ particle density distribution $f(\xi) \sim \text{const}$

Ref: Sollfrank, Schnedermann, Heinz, PRC48(1993) 2462.

Model fit with resonance feed down

- Generate p_T distribution for each particle species by (mass, T_{fo} , β_T).
- Decay and create p_T spectra of π ,K,p.
- Chemical parameters : $T_{ch} = 177 MeV$, $\mu_B = 29 MeV$

[P.Braun-Munzinger et al, PLB518(2001)41]

 \rightarrow determine initial particle ratio.

• Create inclusive
$$p_T$$
 spectra. $\rightarrow \chi^2$ test

Inclusive p_T spectra

Create inclusive p_T spectra for each particles, each (T_{fo} , β_t)

Fitting the p_T spectra

- Minimize contribution from hard process
 - $(m_T m_0) < 1 GeV$
- Exclude π resonance at very low pT region
 - π : p_T>0.5GeV/c
- Simultaneous fit in mesh.
 - T_{fo}: 60~240MeV ,4MeV each
 - β_t : 0.1~0.9, 0.02 each

10

- The first 20 n- σ contour levels are shown in each centrality.
- Upper figure show the χ^2 test result ۲ of simultaneous fitting for mostcentral spectra.
- Lower figure show χ^2 contours for • each particles.

- Due to large meshes, 1 sigma of χ^2 ٠ is not clearly determined.
 - \rightarrow need more smoothing.

V/

χ^2 counters

χ² counters for the mid-central and most peripheral spectra

PH*ENIX Centrality dependence of T_{fo} and β_{f}

- Expansion parameters in each • centrality.
- Open circle and lines are • **PHENIX** Preliminary at QM2002, which take blastwave function fit.
- Red is this analysis, which • include resonance effect.
- N_{part} dependence of expansion • is observed:
 - @central: saturate
 - @peripheral : $N_{part} \rightarrow 0$
 - T_{fo} increase, $\beta_t \rightarrow 0$

Conclusion

 We present the final result of identified charged hadron p_T spectra in Au+Au collisions at √s_{NN} = 200 GeV from PHENIX.

PHENIX Collaboration S.S.Adler et al., accepted to PRC, nucl-ex/0307022

- Hydro-dynamical Collective Expansion.
 - Results of 200 GeV data indicate a strong collective expansion at central collisions.
 - $<p_T>$ vs. centrality : the heavier mass, the larger $<p_T>$, steep rise at peripheral to mid-central collisions.
 - Hydro-dynamical model fit to the spectra with resonance decay effect.
 - N_{part} dependence of expansion is observed
 - @central : saturate
 - @peripheral $N_{part} \rightarrow 0 : T_{fo}$ increase, $\beta_t \rightarrow 0$

Brazil	University of São Paulo, São Paulo DLI CNIIV					
China	Academia Sinica, Taipei, Taiwan					
	China Institute of Atomic Energy, Beijing					
	Peking University, Beijing					
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand					
	Dapnia, CEA Saclay, Gif-sur-Yvette					
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay					
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau					
	SUBATECH, Ecòle des Mines at Nantes, Nantes					
Germany	University of Münster, Münster					
Hungary	Central Research Institute for Physics (KFKI), Budapest					
	Debrecen University, Debrecen					
	Eötvös Loránd University (ELTE), Budapest					
India	Banaras Hindu University, Banaras					
A SHOW CHARTER	Bhabha Atomic Research Centre, Bombay					
Israel	Weizmann Institute, Rehovot					
Japan	Center for Nuclear Study, University of Tokyo, Tokyo					
	Hiroshima University, Higashi-Hiroshima					
	KEK, Institute for High Energy Physics, Tsukuba					
	Kyoto University, Kyoto 12					
	Nagasaki Institute of Applied Science, Nagasaki					
	RIKEN, Institute for Physical and Chemical Research, wako					
	Liniversity of Telvie Bunkve ku Telvie					
	Tokyo Institute of Technology, Tokyo					
	University of Teukuba Teukuba					
	Waseda University Tokyo					
S Korea	Cyclotron Application Laboratory KAERL Seoul					
U . Horeu	Kangnung National University, Kangnung					
	Korea University, Seoul					
	Myong Ji University, Yongin City					
	System Electronics Laboratory, Seoul Nat. University, Seoul					
	Yonsei University, Seoul					
Russia	Institute of High Energy Physics, Protovino					
	Joint Institute for Nuclear Research, Dubna					
	Kurchatov Institute, Moscow					
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg					
	St. Petersburg State Technical University, St. Petersburg					
Sweden	Lund University, Lund					

12 Countries; 57 Institutions; 460 Participants*

Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN *as of July 2002

PHENIX Spare **Evidence for equilibrated final state**

- Almost complete reconstruction of hadronic state when system • decouples by the statistical thermal model.
- Fit yields vs. mass (grand canonical ensemble) ٠

> T_{ch} = 177 MeV, μ_{B} = 29 MeV @ 200 GeV central AuAu.

PHIENIX Spare **PHENIX Run History**

Run	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot}	p-p Equivalent	Data Size
01	2000	Au-Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au-Au	200	24 µb ⁻¹	170M	1.0 pb ⁻¹	10 TB
		p-p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d-Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
		p-p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB

Event Characterization

- Centrality selection : Used charge sum of Beam-Beam Counter (BBC, |η|=3~4) and energy of Zero-degree calorimeter (ZDC) in minimum bias events (92% of total inelastic cross sections).
- Extracted \mathbf{N}_{coll} and \mathbf{N}_{part} based on Glauber model.

DNP03 meeting @Tucson Nov. 1, 2003

