

Stephen C. Johnson

Lawrence Livermore National Lab

for the PHENIX Collaboration

Unique Time/Unique Opportunity

- First time in (short) history of H.I.C. when entire field is focused on p(d)-A for a year
 - Common understanding that p(d)-A is essential for quantitative study of A-A re: QGP
 - Studies of cold nuclear matter interesting in their own right
- Opportunity exists for systematic measures that rely less on theoretical propositions
- Use this time to understand numerous physics signals
- In this talk I'll outline some of the PHENIX plans for d-Au studies, focusing primarily on centrality definition techniques

PHENIX and d-Au

- The baseline PHENIX detector is COMPLETE!
- With the upcoming d-Au run, this detector can be used to measure
 - High p_T hadrons: jet suppression vs. parton saturation
 - J/
 production over a wide kinematic range: nuclear shadowing at small x
 - Open charm from high p_T leptons
 - Cold nuclear medium effects on [],
 - Variety of hadronic observables:
 - E_T, N_{ch}, HBT
- While many theoretical predictions can be differentiated with min-bias distributions, systematic studies require global event characterization

Wang & Wang PRL89 (2002) 162301

Q: is p-A d-A?

🕌 A2: Yes

- Study (by B. Cole) of thickness function (T) seen by p & n in deuteron
 - Monte Carlo deuteron using Hulthen wave function
- For central neutron proton distribution mostly central
- For peripheral, peripheral
- But long tails due to deuteron size
- How can we trigger on collision conditions?

Shades of grey

- True systematic comparison with minimum of theoretical meddling requires N_{binary} dial
- - Variety of d-A combinations?
 - · Trivial to do in fixed target experiments
 - · Unrealistic at RHIC
 - Particle multiplicity or E_T?
 - · Difficult to disentangle biases
 - E.g. N_{\square} multiplicity vs. E_{T}
 - Problem exacerbated for low multiplicity environment of d-A
 - Grey particles
 - "Knock-out" nucleons forward biased
 - More sensitive, less biased, independent measure of centrality
 - Black particles
 - Evaporation nucleons -- isotropic
 - Also related to centrality (but less so)

FIG. 2. Angular distribution of identified protons with respect to the beam direction for (a) grey protons with momentum > 0.3 GeV/c and (b) black protons with momentum < 0.3 GeV/c.

N_{grey}/N_{black} relations

Physical picture:

- N_{grey} directly related to N_{binary}
- N_{black} related to excitation of nucleus (N_{grey})

Previous Uses of Grey Protons

FIG. 4. The ratio $R = \langle n \rangle_{pA} / \langle n \rangle_{pp}$ versus the average number $\overline{v}(n_p)$ of projectile collisions for pXe (circles), pAr (triangles), and pNe (squares) collisions. A line of the form $R = 0.5[\overline{v}(n_p) + 1]$ is shown for comparison.

Strangeness at CERN NA49 PRL85 (2000)

4868

Figure 3. Mid-rapidity yields as a function of number of wounded nucleons for (a) baryons (b) antibaryons (c) $\tilde{\Xi}^+/\Xi^-$ ratio at mid-rapidity

And where are they located at RHIC?

Tagging centrality/collision flavor

On nucleus side:

- ZDC measures only evaporation (black) neutrons (by design)
- Beam pipe shadows grey neutrons
- Larger calorimeter on Au side can measure grey protons

On deuteron side:

- ZDC can tag on p-A like collisions
- Addition of small proton calorimeter can trigger on n-A like collisions

Interesting side notes:

- Same detector on Au side can be used in p-A
- Combination of both detectors can trigger on 200GeV n-n collisions should RHIC every run d-d.

Fig: Distribution of black and grey nucleons at ZDC position with no scattering. [Protons look wider in y due to relative statistics thrown.]

Born in the Bahamas

Needed working calorimeter on short order

2 @ 18th Winter Workshop:

 Mentioned idea to measure forward protons in d-A collisions to several participants -searching for quick detector solution

Encouraged (by Rene) to consider 864 hadron calorimeter

Over the course of the next couple months we

Found the modules (eek!)

Tested them (aah!)

Detector Specifics

- ≥ >700 Pb-Sci modules
 - 10cmx10cm face
 - 117cm long
 - Scintillating fibers along length in grooves of Pb
 - 47x47 array
 - Best energy resolution:35%/sqrt(E)
- **E864:** NIM A406 (1998) 227

Expected Sensitivity

- Throw d-Au collisions with simple Glauber model ==> determine N_{binary}
- Use E910/Stenlund-Otterlund measurements to determine
 - $N_{grey}(N_{binary})$
 - $N_{black}(N_{grey})$
- Take raw grey/black definition from E910 ntuple -- boost to RHIC energies
- Simple MC including
 - All beam components
 - One big block of Pb-Sci for calorimeter
- N_{binary} resolution very similar to E910.

From Vision to Reality

- Detector instrumented in PHENIX
- Array of 9x10 modules centered at beam pipe
 - Cockroft-Walton on tube base -only supply LV
 - Signals into identical electronics as the PHENIX Emcal
 - Low and high (x16) gain readout
 - Low gain tuned for beam, high gain still good for cosmics
 - Array remotely moveable for calibration
 - That's 12 tons within 1/2cm of the beam pipe...
- Nearly identical detector built by PHOBOS

First Results

- The detector is in, working, and taking data.
- South detector (Au) is run at lower PMT gain than north (d)
 - Don't compare absolute scales of top figure to bottom
- As expected: proton shower much more contained than black/grey distribution
- Blacks predominantly contained to first couple columns, greys distributed over rest of calorimeter

The Present and the Future

- Detailed simulations of detector response
- Precise calibration of modules
 - With comics and beam
- Shower reconstruction
 - To improve N_{binary} resolution
- - Full event characterization includes intelligent use of FCAL, ZDC, BBC, etc.
- Publish
- Sleep

Collaborators:

The results of this work are well-nigh impossible without the work of a large number of collaborators

- However, those individuals who contributed directly to this small part of PHENIX for a significant fraction of their time are:
 - Jane Burward-Hoy (LANL), Nathan Grau (ISU), Mike Heffner (LLNL), Gerd Kunde (LANL), Ron Soltz (LLNL), Ray Stantz (FAU), SCJ (LLNL)
- We also enjoy a strong collaborative relationship with the PHOBOS PCAL group:
 - Nigel George, Corey Reed, George Stephans

Extra slides:

Deuteron Wave Function

Hulthen wave function

• I have started with the Hulthen wave function for the deuteron because it is trivial to Monte-Carlo.

☐ This probability distribution can be represented as the convolution of three exponential distributions

To Monte-Carlo P(r):
$$r = \frac{1}{2a}\ln(ran()) + \frac{1}{2b}\ln(ran()) + \frac{1}{a+b}\ln(ran())$$

Hulthen Wave Function -- Results

- Below I plot the wave-function & related distributions and a comparison of Monte-Carlo and P(r).

Slide stolen from B.A. Cole 31 May 2002