

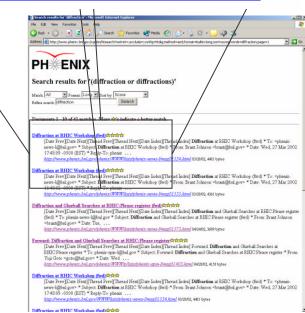
Stephen C. Johnson Lawrence Livermore Lab

Caveats and Introductions

- I am not an expert in diffraction.
 - So why am I talking?
 - Better question: why are you listening?
 - Very little thought on diffractive capabilities among PHENIXians
 - 1 I was an interested 'volunteer'
- 1 This talk will consider:
 - PHENIX detector specifics
 - PHENIX DAQ details
 - Review of 1st pp and 2nd AA runs
 - Capabilities for diffraction measurements with PHENIX
 - 1 Now
 - After upgrades already in progress
 - 1 With even more upgrades

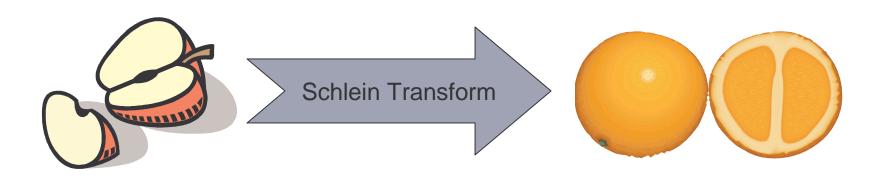
Documents 1 - 10 of 41 matches. More $\frac{1}{2}$'s indicate a better match.

Diffraction at RHIC Workshop (fwd)

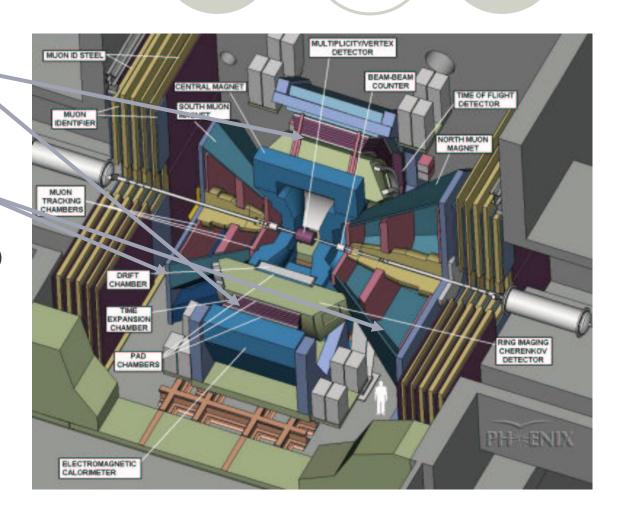

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] **Diffract** news-l@bnl.gov> * Subject: **Diffraction** at RHIC Workshop (fwd) * From: Brant Johns 17:48:09 -0500 (EST) * Reply-To: phenix . . .

http://www.phenix.bnl.gov/phenix/WWW/lists/phenix-news-l/msg01354.html 03/28/02,

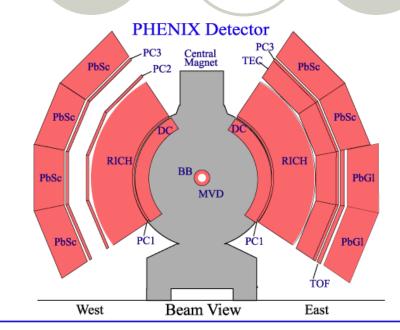
Diffraction at RHIC Workshop (fwd)☆☆☆☆

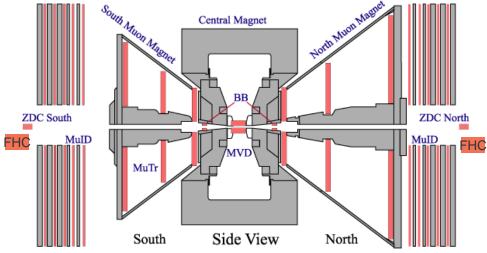

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] **Diffract** news-l@bnl.gov> * Subject: **Diffraction** at RHIC Workshop (fwd) * From: Brant Johns 15:48:52 -0500 (EST) * Reply-To: phenix ...

http://www.phenix.bnl.gov/phenix/WWW/lists/phenix-news-l/msg01353.html 03/28/02,


A few words

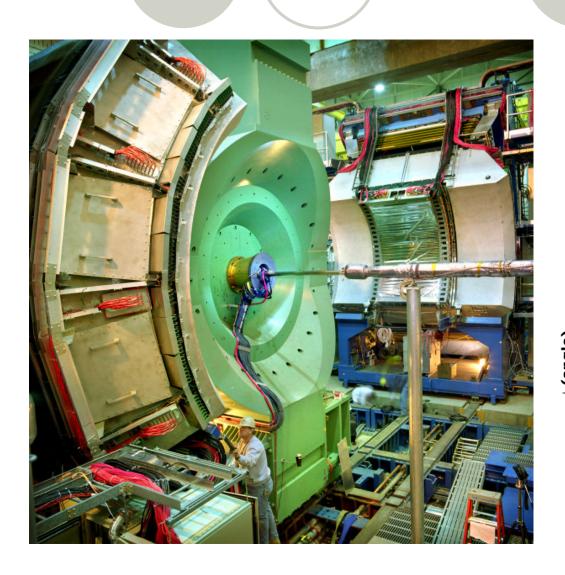
- 1 PHENIX experiment was built to study rare probes from a QGP
 - Consistently in AA, pA, and pp collisions
 - And has been adopted to measure gluon spin distribution (∆G) by our spin colleagues
 - Can we make diffractive measurements?
- 1 Interesting to consider ... but

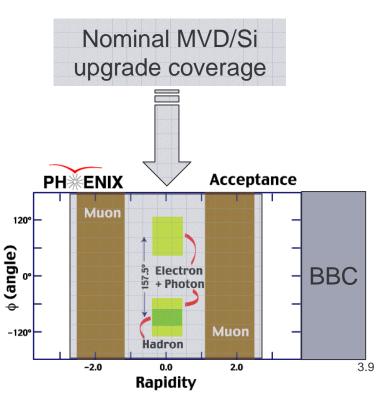

The PHENIX Detector (in simulation)


- 1 Two "central" arms
 - Hadron
 - : Electron
 - : Photon
- 1 Two "forward" muon arms
- 3 Global detectors
 - Forward nucleons (p,n)
 - Beam-beam counters
 - Silicon multiplicity $(|\eta|<2.4)$
- Designed as rare probe, high rate experiment for QGP characterization / spin observables

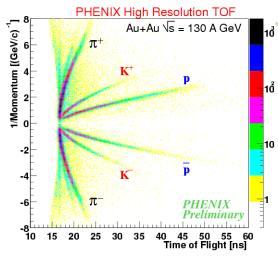
The PHENIX Detector (in simulation)

- 1 Two "central" arms
 - : Hadron
 - : Electron
 - ; Photon
- 1 Two "forward" muon arms
- 1 3 Global detectors
 - Forward nucleons
 - Beam-beam counters (3.0<|η|<3.9)
 - Silicon multiplicity $(|\eta|<2.4)$
- Designed as rare probe, high rate experiment for QGP characterization / spin observables (ΔG in pp and pA).

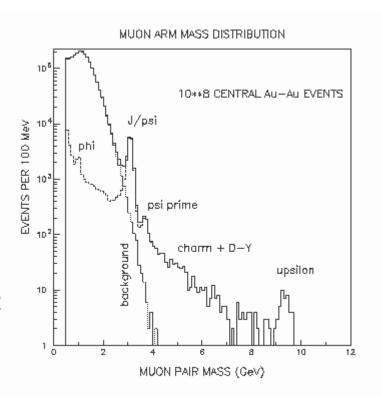


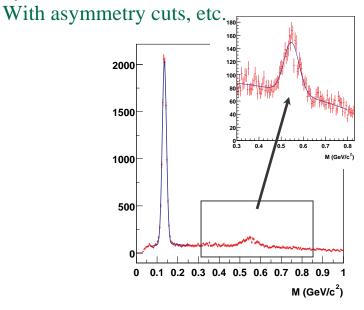


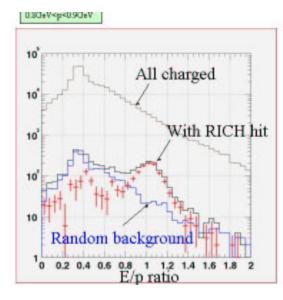
In reality



Acceptance

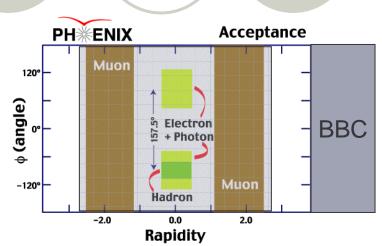

Particle identification

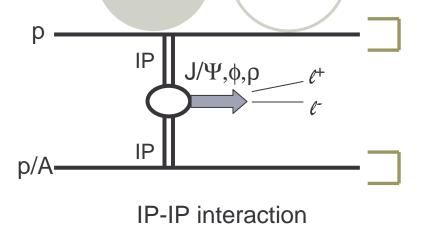

In Year 1:

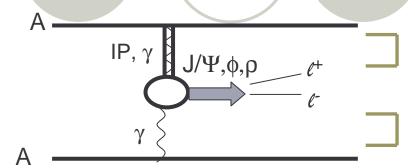

$$\frac{\partial p}{p} = 0.6\% \oplus 3.6\% p$$

Expected dramatic improvement in Year-2

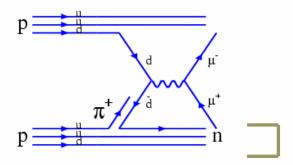
- Electrons are identified by RICH and EMCAL
- A clear peak in energy/momentum (E/p) ratio is seen at 1.0 after RICH hit is required
- EMCAL E/p cut cleans up the rest of the background.
- Random background is also subtracted by an event mixing method

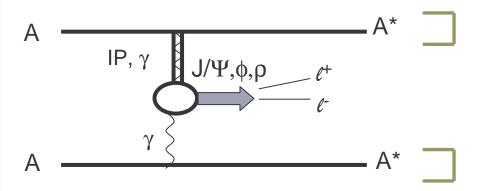

A brief run history


- 1 RHIC recently completed it's 2nd run
 - Second AuAu run
 - 1 Recorded: 24μb⁻¹
 - ; First pp run
 - □ Recorded: .15pb⁻¹ (most in final two weeks)
 - 1 Max 22kHz trigger rate ç all processed at LVL-1
 - No prescaling of core physics triggers
- Pocket numbers:
 - PHENIX LVL-1 can process maximum RHIC rate (12 MHz in pp)
 - FEM/DCM max bandwidth limitation: 12.5kHz
 - 1 Write to tape rate has event size dependence: Central AuAu @ ~60 Hz, etc.
 - Triggers:
 - 1 Electron pairs, high p_t , γ/π^0 , coherent peripheral, etc.
 - 1 The DAQ processed these triggers at 1kHz rate in year-2

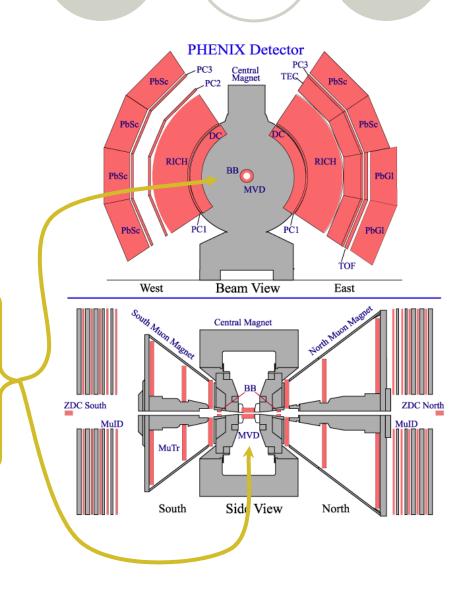

Diffractive musings

- 1 (Current) PHENIX ==
 - high rate
 - $= e/\mu/\gamma$, high p_t specialty
 - 1 Leading particles
 - Global detectors
 - 1 Multiplicity Vertex Detector: $|\eta|$ <2.4
 - 1 Beam-beam counter: $3.0 < |\eta| < 3.9$
 - 1 Zero degree calorimetry(2): forward (beam) p/n
 - Partial acceptance, especially at large rapidities
 - 1 Rapidity gap not cleanly definable
 - 1 Jet cone difficult to reconstruct
 - 1 No forward proton detection in pp collisions


Possible measurements next run


Coherent peripheral interaction (triggering code already exists)

Tagged Drell-Yan production at RHIC?


One can tag on forward-going proton, neutron, Δ , Λ in coincidence with lepton-pair detection Probe anti-quark distribution of meson cloud

Courtesy: Jen-Chieh Peng

Additional capabilities with upgrade(s)

- The addition of Roman Pots would greatly increase the diffractive physics reach of PHENIX (all RHIC experiments)
 - Is anyone considering this upgrade? (STAR: yes; anyone else?)
- Other upgrade considerations by PHENIX (τ~3 years)
 - Hadron blind detector
 - Increased dalitz rejection for LVM
 - i Inner tracker (TPC?)
 - Increased η,φ coverage Ł gaps and jets
 - Upgraded silicon detector (Bdecays...)

Conclusions

- 1 Overview of PHENIX experiment
- Possibilities of diffractive measurements with current detector
 - ; With upgraded detector
- 1 My naïve conclusions:
 - ; Some interesting physics available
 - 1 Unique capabilities of PHENIX
 - Is not a perfect fit ...