High momentum charged hadron spectra from Au + Au collisions at RHIC

Jiangyong Jia

State University of NewYork at StonyBrook

For the **PHENIX** Collaboration

- Motivation
- Experiment setup and analysis
- Physics result
- Summary

Charge Particle High p_T **Physics**

- Jet production dominates particle yields at high p_T
- Jet created early in collision
- Expect parton energy loss in presence of hot dense medium

Jet quenching

- Suppression of high p_T spectra
- Strong centrality dependence

High pt suppression at 130 GeV

- First observation of high pt hadron suppression in Au+Au at 130 GeV
 - PHENIX collaboration PRL 88 (2002) 22301
- Quantify suppression by nuclear modification factor R_{AA}

$$R_{AA} = \frac{1/N_{evt}d^2N_{AA}/dp_Td\eta}{(\langle N_X \rangle/\sigma_{inel}^{NN})d^2\sigma^{NN}/dp_Td\eta}$$

- Detailed p_T and centrality dependence
 - Peripheral $R_{AA} \rightarrow 1$
 - Central R_{AA} saturates ~ 0.6 at pt >2GeV/C

Consistent with STAR(nucl-ex/0206011)

PHENIX Experiment for Au+Au at 200 GeV

PHENIX Detector - Second Year Physics Run PC3 Central Magnet TEC PbSc PbSc PbSc PbSc RICH RICH BB **PbSc** PbG1 MVD PC1 PC1 PbGl PbSc TOF Beam View West East

Data sample

- 27 million min. bias events
- Event centrality
 - Zero Degree Calorimeter
 - Beam Beam Counter
- Tracks in west arm
 - reconstructed by DC,PC1
 - momentum resolution
 Δp/p ~ 1%⊕1%p GeV/c
- Background rejection
 - tight track match to PC2,PC3
 - remaining background measured and subtracted statistically

Corrections

- Monte-Carlo simulation of single particles through PHENIX detector
- Plateau is given by geometrical acceptance and efficiency
 - yellow band show the systematic error
 - 15 % for $p_T < 8$ GeV/c 30 % for $p_T < 10$ GeV/c
- Embed single particle into real events to estimate occupancy correction
 - correction for most central collision is $1.35 \pm 6\%$
- p_T and centrality dependence factorize.

p_T spectra from Au+Au at 200 GeV

- Spectra measured up to 10 GeV/c
- Central and peripheral spectra have clear power shape
- Increased yield compare to 130 GeV

Ratio central/peripheral

colored bracket represent the systematic error.

- Lower ratio for 200 GeV
 - more suppression or change in proton yield?
- Similar shape for 130 and 200 GeV
 - increase to 2 GeV/c
 - decrease to 4 GeV/c
- appr. const above 4 GeV/c at 200GeV

Charged particle p_T **spectra from 200 GeV**

Centrality dependence of spectral shape

• Analyze inverse slope :

$$p_{\mathrm{T}}^{\mathrm{\,trunc}} = \langle p_{\mathrm{T}} \rangle$$
 - $p_{\mathrm{T}}^{\mathrm{\,min}}$

- From peripheral to central:
 - $\begin{tabular}{l} \bullet & inverse slope increases for \\ low p_T \end{tabular}$
 - it decreases for medium p_T
 - slight decrease for high p_T
- Observed for both130 and 200 GeV

N+N reference

PHENIX p+p data at 200 GeV

- π^0 data out to 13 GeV/c
- consistent with NLO pQCD calculation
- charged hadron results not available yet

Comparison to fit of UA1 data

- UA1 data at 200GeV
- PHENIX π^0 spectra scaled by 1.6
- π^0 significantly above UA1 fit at high p_T
- 30-40% correction $|\Delta\eta| < 2.5 \rightarrow |\Delta\eta| < 0.5$ at 6 GeV/c
- π^0 spectra factor 2 above fit at 6GeV

Charged hadron N+N reference

- Use π^0 data to constrain fit
- systematic uncertainty40% at 6 GeV/c80% at 10 GeV/c

Comparison with NN references I

Calculate R_{AA} : divide data by NN references

- R_{AA} for peripheral collisions
 - $\sim 0.75 \pm 0.3$ for $p_T > 2GeV/c$
 - consistent with 1
 - similar to 130 GeV

- \bullet \mathbf{R}_{AA} for central collisions
 - significantly below 1
 - 200 GeV below 130 GeV data
 - $\sim 0.2 \pm 0.08$ from 4 to 8 GeV/c

Comparison with N+N references II

- Continues increases of suppression towards central collisions
- Suppression more pronounced at high p_T

Centrality dependence of particle yields at high p_T

- Yield integrated above 4 GeV/c
- Normalized to number of binary collisions
 - continuous decrease as function of centrality
 - factor ~ 3.5 decrease from peripheral to central collisions
- Normalized to number of participants
 - first increase, then decrease as function of centrality

Summary

- Charged hadron p_T spectra measured up to 10 GeV/c for Au+Au at 200 GeV
- Similar high p_T hadron suppression at 200 GeV compared to 130 GeV, but more pronounced
 - 11 centrality bins with increased pT range
- Spectra evolves gradually as function of p_T and centrality
 - For $p_T > 2$ GeV/c inverse slope decreases with centrality
 - For peripheral collisions $R_{AA} \sim 0.75 \pm 0.3$ at high p_T consistent with 1
 - For central collisions $R_{AA} \sim 0.2 \pm 0.08$ at high p_T significantly below 1
 - \bullet R_{AA} and central/peripheral ratio approximately constant between 4 to 8 GeV/c
 - For $p_T > 4$ GeV/c yield/Ncoll suppressed by factor ~ 3.5 in central compared to peripheral collisions
- Outlook
 - factor 2-3 more Au+Au statistics
 - improved systematic error
 - measure p+p charged hadron spectra