Charged Particle High pt Spectra at PHENIX

For the PHENIX Collaboration

QGP and Charge Particle High pt Physics

- Hard parton fragments carries information of QGP
 - Suppression of high pt spectra
 - Strong centrality dependence
 - In which pt and centrality?

PHENIX Setup

- Global Observables
 - event characterization ZDC, BBC
- Charged Particles
 - tracking & momentum East arm DC, PC1, PC3
- 1.4M minimum bias events

- More background rejection power by new tracking subsystem
- ~170 events total(92 minimum bias)
- spectra can be measured independently in west and east arms

High pt Charged Hadron Spectra at 130GeV/c

Centrality dependence of charged particle production

APS 04/21/2002

- Charged hadron spectra in bins of centrality show a gradual loss in concavity as they evolve from peripheral to central collisions.
- The loss in concavity is consistent with the effect one might expect from suppression

Change in Shape

Local inverse slope characterize the spectra shape

- It is more convenient to calculate Mean pt above a pt cut $\langle p_T \rangle$ p_T^{min}
- Centrality dependencies at high pt region are clearly different from low pt region

Hydrodynamic collective flow at low pt.

Suppression at high pt.

Comparison with NN references I

• R_{AA} for 5 centrality bin

- Peripheral $R_{AA} \rightarrow 1$
- Central R_{AA} saturates ~ 0.6 at pt >2GeV/C
- Changes in behavior in 30-60% bin.

PHENIX preliminary

$$R_{AA} = \frac{1/N_{evt}d^2N_{AA}/dp_Td\eta}{(\langle N_X \rangle / \sigma_{inel}^{NN})d^2\sigma^{NN}/dp_Td\eta}$$

Comparison with NN references II

Soft and hard production have different scaling behavior: R_{AA} and $R_{AA}^{(part/2)}$

Ratio for central are the same for 3 pt intervals reflects the saturation of R_{AA} at high pt

With increasing pt, $R_{AA}^{(part/2)}$ saturates at successively lower Npart, most of this changes occurs in the range of Npart below 100-150 which sits within 30-60% centrality bin.

Run2 analysis status

- ✓ 92 million minimum bias + 80 million level2 triggered events
- ✓ Momentum resolution dp/p < 1%p(3.5% for Run1)
- ✓ West arm (DC PC1 PC2 PC3), No random association background
- ★ Open issue : background from decay and photon conversion at pt > 6 GeV/c

Conclusion and outlook

- Charged particle momentum spectra have been measured for different centrality selection up to 5GeV/c at 130 GeV
 - Particle production is suppressed at high pt relative to binary NN scaling.
 - At pt>2GeV/c, inverse slope decreases with centrality, the trend is opposite at low pt.
 - For pt>2GeV/c, R_{AA} in central collisions saturates at 0.6.
 - At high pt, $R_{AA}^{(part/2)}$ saturates at 3 for Npart >150.

- In Run2, PHENIX tracking detectors are fully operational
 - 92 million MB Au Au (plus 80 million level2 events)
 - ~ 200 million MB Proton Proton events
 - Momentum resolution dp/p< 1%p(GeV/c)

APS 04/21/2002

- Need to address background problem at pt>6GeV/c
- Expect accurate measurement of R_{AA} at high pt

Proton Contamination

 $\begin{array}{c} \text{gradual onset of suppression} \\ \text{with centrality and } p_T \end{array}$

Phys. Rev. Lett., (2001)

Slides not to be shown

whratioAuau_1_1

Ratio of 6 centrality bin / minimum bias

hisplay_0_1

