Prompt Photon Production at $\sqrt{s_{NN}}=200$ GeV p-p and d-Au Collisions

> Hisayuki Torii , RIKEN for the PHENIX Collaboration 2005/Mar/24 JPS Meeting

PH ENIX

Physics Motivation

- Nuclear Effect
 - Initial Parton Distribution
 - EMC effect
 - Shadowing, anti-shadowing
 - color glass condensate
 - Final Parton Interaction
 - Multiple Scattering (Cronin effect)
 - Jet Quenching
- Prompt photon production is a good probe to measure the modification of the initial parton.

In this talk, we will compare the prompt photon production in d+Au collisions with an NLO-pQCD calculation and with that in p+p collisions, and will discuss about the nuclear effect.

Physics Motivation

PHENIX

- 3.8km with 2 rings
 - 120bunch/ring
 - 106ns crossing time
- Maximum energy
 - 250GeV for p(polarized)
 - 100GeV/nucleon for Au
- Luminosity
 - Au-Au : $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-2}$
 - $p-p: 2 \ge 10^{32} \text{ cm}^{-2} \text{ s}^{-2}$
- 6 Crossing points

2 central Spectrometers

2 forward Spectrometers

- 3 detectors to measure the collision point, the luminosity, and the multiplicity.
 - Beam Beam Counter(BBC)
 - Zero Degree Calorimeter(ZDC)
 - Multiplicity and Vertex Detector(MVD)

Electro-Magnetic Calorimeter

Lead Scintillator (PbSc)

-Sandwich type calorimeter
•Lead 110.4x110.4x1.5mm
•Scintillation 55.2x55.2x4mm
-Shish-kebab type readout
•With wave length shifter fiber
-6 sectors(15552 channels)

•Coverage

 $\begin{array}{l} -|\eta|{<}0.38\\ -\varphi=180^{\circ} \end{array}$

900 550	PbSc
Size(cm x cm)	5.52 x 5.52
Depth(cm)	37.5
Number of towers	15552
Sampling fraction	~ 20%
η cov.	0.7
φ cov.	90+45deg
η/mod	0.011
∲/mod	0.011
X ₀	18
Molière Radius	~ 3cm

Prompt Photon Production

Prompt photon production consists of two processes .

$$\sigma = \sigma_{dir} + \sigma_{frag} = \sum_{i,j,k} \int dx_i dx_j \times \begin{bmatrix} f_1^i(x_i, \mu) \cdot f_2^j(x_j, \mu) \end{bmatrix}$$
 parton distribution function (PDF)
fragmentation function (FF
× $\sigma(i + j \rightarrow \gamma) + \int dz \sigma(i + j \rightarrow k) \times \begin{bmatrix} D_k^3(z_k, \mu_F) \end{bmatrix}$
Direct Process
Fragmentation Process
bremsstrahlung radiation
or the process
Compton/Annihilation process

How to Measure?

No one know which photon from what.

Non-vertex Photon Neutral hadron contribution Noise in the detector Hadron(π^0 , η , ω .) decay

Background

Estimate all backgrounds

After subtracting all backgrounds,

the remained photons are the signals.

Background from π^0

By taking all combination between the target photon and the surrounding photons, we can know the photon from pi0 decay.

 \rightarrow 70% of pi0 decay can be identified from the mass distribution

Background from π^0

- Identified $\pi 0 \operatorname{decay}(\sim 70\%)$
 - Check measured $\pi 0$
 - Peak position and width is consistent with the expectation
 - Energy asymmetry is consistent with the expectation
 - All channels of EMCal are working.
 - We confirmed all channels are working properly.
 - No-Position dependence
 - Systematic uncertainty due to the combinatorial bg.
- Un-identified $\pi 0$ (~30%)
 - Corrected by a Monte Carlo simulation
 - The main loss is due to the geometrical acceptance.
 - Systematic error on the Monte Carlo
 - Was estimated from the possible miss-tuned parameters in MC.
- Other Hadron
 - PHENIX measured η
 - ω and other hadron was estimated by assuming m_T scaling
- Other souce
 - Neutral/charged hadron and non-vertex photon was estimated by the GEANT simulation and data itself.

モンテカルロ自体は過去のテスト実験 等で測定してきたEMCalの性能を再 現するように調整済み。

Result

- Result in p+p
 - Was already reported in previous meeting
- NLO pQCD Calculation
 - p+p collisions
 - Calculated by W.Vogelsang
 - CTEQ5M
 - Scale(renormalization and factorization scale)を0.5,1.0,2.0p にとる。
- In comparison with d+Au
 - Averaged number of collisions (8.42) from the Glauber model was multiplied to the calculation.

Result is consistent with the binary – scaled NLO-pQCD calculation

10

Result

11

Conclusion

- We measured the prompt photon production in 200GeV d+Au collisions.
 - The first time in the world.
 - pT range is 5-16GeV/c | | < 0.35
- In comparison with NLO-pQCD
 - Result in d+Au collisions is consistent with the binary-scaled NLO-pQCD calculation.
- Nuclear Modification Factor
 - Consistent with 1 \rightarrow No modification within the errors
 - Prompt photon production in d+Au can be described as
 - Result is consistent with what we measured in $\pi 0$
 - We can conclude the nuclear effect in the prompt photon production is small.
 - ➔ This is consistent with non-suppression of photon production in AuAu collisions.