Measurement of prompt photon in $\sqrt{s}=200$ GeV pp collisions with isolation cut method

Hisayuki Torii for the PHENIX Collaboration RIKEN JPS meeting at Kouchi Univ.

Motivation

- Physics meaning of direct photon
 - Is a good probe of parton structure in proton.
 - One of simple process at hadron collisions.
- Why direct photon at RHIC?
 - A reference for QGP search
 - A baseline for measurement of gluon spin
 - RHIC provide the highest energy as proton-proton collisions in the world. → another baseline for the structure in proton.
- Contents of this talk
 - Perform another isolation method following the previous talk (by Kensuke).
 - The method in this talk provides better S/N ratio than the previous one.
 - The direct photon and fragmentation photon can be separated by the isolation method.
 - Compare the result with the past experiments and an NLO-pQCD calculation.

PDF/FFは主に deep inelastic scattering(DIS)/e++e-消滅反応で測定。

本研究では、これらのPDF/FFを使った next-to-leading order(NLO) pQCD計算との比較を行う

Strategy of Isolation Method

Efficiency of the Isolation Cut

- What cause the efficiency/inefficiency?
 - Event structure
 - Especially, the signal of fragmentation type will be reduced by this cut.
 - PHENIX acceptance is not perfect so that it can't cover all the cone.
 - Underlying event due to the multi-parton scattering.
- The efficiency of the isolation cut needs to be estimated by Monte Carlo Simulation.
 - The simulation depends on the model of the Monte Carlo.
 - The estimated efficiency by PHTHIA simulation
 - For the signal(direct) >90% for pT>5GeV/c
 - For the signal(fragmentation) now working.
 T.Horaguchi and K.Nakano are working for these physics.
- In this talk, we compare the previous result shown by Kensuke and the result from the isolation method without correction for the efficiency.
 - The comparison may enable us to separate different two signals, direct or fragmentation photon.

Event Selection and Analysis

- Event Selection
 - Data are taken during Run3 p+p run.
 - 2003/Apr May
 - Both photons are longitudinally polarized at PHENIX.
 - Data samples triggered by ERT is used in this analysis.
 - 266pb-1 equivalent.
- Analysis procedure.
 - The base samples are photons
 - EM shower is photon-like
 - No charge hit on chambers in front of EMCal.
 - Isolation cut .
 - Photons from pi0 decay is identified from data itself.
 - For the contribution of pi0 which was not able to be detected and for that of other hadrons (omega eta, etc), a Monte Carlo simulation used.
 - Cross section of pi0 and eta are
- Cross section calculation $E\frac{d^3\sigma}{dp^3} = \frac{1}{L} \times \frac{1}{2\pi p_T} \times \frac{N_{photon}}{\varepsilon_{eff} \times \varepsilon_{acc} \times \varepsilon_{triggerbias}}$

S/N Ratio with Isolation Cut

The S/N ratio improve by a factor of about 5
– Especially, in this method

- This method works very well!!!
 - Good S/N ratio is essential for the future ALL measurement.

Results

- Comparison with the result by subtraction method shown by previous talker (Kensuke)
- The two results are not different as expected.
 - This fact indicates whether
 - The fragmentation photon pass through the isolation cut
 - Or
 - The measured prompt photon(shown by Kensuke) is dominated by direct photon.
- The further analysis is on going.

Comparison with pQCD

- Results
 - From subtraction method shown in the previous talker(Kensuke)
- Comparison with an NLOpQCD calculation
 - Private communication with W.Vogelsang
 - With CTEQ6M PDF.
 - Three different scales.
- The present result is consistent within the pQCD calculation at three different scales.

Comparison

- Comparison with existing data from p+p and p+pbar collisions
 - The cross section increases systematically as the energy increases.

10

X_Tスケーリング則 p+p collisions vs=20-1800GeV QCD理論によると、以下の仮定 ● D0 p+p √s=1800GeV - PDFFF**0** Q^2 **7**r-J**7**JCDF p+p \s=1800GeV 迈10 ■ UA2 p+p √s=630GeV - Coupling constant(α_{s})がQ²に非依存。 e_{10} O UA1 p+p √s=630GeV ▲ UA1 p+p vs=546GeV △ UA6 p+p \s=24.3GeV $\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$ [%].10 n=**定数。**x_т=2p_т/√s 10 相互作用項と構造を表す項に分離 10 →x_Tスケーリング 10 - 定数nに対する予想 10 • Leading order n=4 p+p collisions √s=20-200 GeV ▼ PHENIX-Run3 p+p \s=200GeV • Next-to-leading order: $n=4+\alpha$ 10 ♦ R806 p+p √s=63GeV ★ R110 рнр √s=63GeV 10 E706 p+p \s=38.7GeV x_Tスケーリング則n=5付近で成立 ★ E706 p+p √s=31.5GeV + UA6 p+p \s=24.3GeV 10 X NA24 p+p \s=23.75GeV 今回得られたデータを過去のデータ • WA70 p+p \s=22.96GeV 10 $(\sqrt{s}>20 \text{GeV})$ と比較して、 x_T スケーリン グ則がn=5付近で成り立つ。 Хт 10⁻² 10⁻¹

Conclusion

- Direct photon measurement at p-p collisions is very important for QGP search and spin physics at RHIC.
- Isolation method
 - Is expected to be useful to separate two signals, direct and fragmentation.
 - Works very well to improve the S/N.
 - Will be used for the future analysis of ALL measurement
 - Shows consistent result with the previous result (by Kensuke)
- Results
 - The result from isolation method is not so different from that from subtraction method.
 - This indicates whether
 - Fragmentation photon pass through the isolation cut
 - The measured prompt photon (reported by Kensuke) is dominated by direct photon.
 - pQCD calculation (with the PDF measured by DIS) can describe very well
 - The present result shows consistent information about the structure.
 - This fact is very essential for the future analysis of ALL.
 - X-T scaling shows a point like interaction of the measurement.

Backup Slides

Bias on Physics Process

- Two processes
 - Direct
 - Fragmentation

- Direct photon measurement at pT>5GeV/c is dominated by direct process.
 - The difference between two methods is small.

Private communication with W.Vogelsang

Fragmentation

Comparison with the RunII

- Comparison
- RunII and RunIII are consistent
- RunIII provide larger statistics
 - Pt = 5-18 GeV/c
 - Cross section 1 10^3
 pbGeV-2c3

Results

Ratio to run2pi0 fit

PHENIX Preliminary

16

X_T Scaling

- From eye-ball fitting,
 - n=6 shows better agreement
 - Between 20 200GeV
 - $x_T = 0.05 0.5$
- I'd like to emphasize that the present result covers x_T down to 0.05
 - We can go down lower x_T range in the future \rightarrow next slide.
- I'd like to show this comparison at JPS meeting.

xT-scaling with p+pbar data

Relativistic Heavy Ion Collider

PHENIX実験 **PH**^{*}ENIX **Pioneering High Energy Nuclear Interaction eXperiment** TIGE OF FLID MUSN TRACKIN -----BLOCTROMAGNETICS 全周3.8km 2リング 120bunch/ring 106ns crossing time 最大エネルギー 2 central Spectrometers 2 forward Spectrometers 250GeV for p(polarized) 衝突点、ルミノシティー、中心度を決めるための3つ 100GeV/nucleon for Au の detector がインストールされている。 Luminosity Beam Beam Counter(BBC) Au-Au : $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-2}$ Zero Degree Calorimeter(ZDC) $p-p: 2 \ge 10^{32} \text{ cm}^{-2} \text{ s}^{-2}$

 $6 \mathcal{O}$ Crossing point

Multiplicity and Vertex Detector(MVD)

電磁カロリーメータ

PbSc型力ロリーメータ

Sandwich type calorimeter Lead plates 55.2x55.2x1.5mmScintillator plates 110.4x110.4x4mmShish-kebab geometry wave shifter fiber readout 6x6 fibers $\rightarrow 1$ PMT = 1 tower 2 x 2 towers = 1 module 6 x 6 module = 1 super module 6 x 3 super module = 1 sector

	PbSc
Size(cm x cm)	5.52 x 5.52
Depth(cm)	37.5
Number of towers	15552
Sampling fraction	~ 20%
η cov.	0.7
φ cov.	90+45deg
η/mod	0.011
φ/mod	0.011
X ₀	18
Molière Radius	~ 3cm

PbSc sector 2.0m x 4.0m

PbG1型カロリーメータ

Lead Glass calorimeter Lead Glass 40x40x400mm used at WA98 exp. 4x6 towers = 1 super module 15*12 super module = 1 sector

	PbGI
Size(cm x cm)	4.0 x 4.0
Depth(cm)	40
Number of towers	9216
Sampling fraction	100%
η cov.	0.7
φ cov.	45deg
η/mod	0.008
∲/mod	0.008
X ₀	14.4
Molière Radius	3.68cm

PbGl sector 2.1m x 3.9m

ERT トリガー

- EMCal RICH level1 Trigger(ERT)
 - electron, di-electron, photon, high- $p_T \pi^{\pm}$ をトリガーする目的。
 - 本研究では、ERTのEMCal部分のみを使用
- ・ 電磁シャワーのエネルギーを得るために、タワー

 (5.5x5.5cm²[PbSc] 4x4cm²[PbGl])のエネルギーの合計をとる必要がある。
 - 2x2 towers non-overlapping sum (threshold=0.8GeV)
 - 4x4 towers overlapping sum (threshold=2 and 3GeV)
- 本研究でのπ⁰測定には、2x2 non-overlapping sumを使用。
 - Enhances high-pT π^0 by a factor of 50

PHENIX実験

NLO-pQCD計算との比較

- Next-to-leading order(NLO)
 pQCD計算のパラメータ
 - Parton distribution function(PDF): CTEQ6M
 - Fragmentation function(FF): KKP
 - Matrix calculation by Aversa, et. al.
 - Renormalization and factorization scales are set to be equal and set to

 $1/2p_{\rm T}, p_{\rm T}, 2p_{\rm T}$

 W.Vogelsangとのprivate communicationによる計算結果と 一致している。

得られたデータは、3つのスケールを用 いた計算結果の範囲で一致している。

過去のデータとの比較

陽子陽子衝突では最高エネルギー

- CERN

- ISR (1971~) p+p $\sqrt{s}=10-60$ GeV
- SPS(1977~) p-beam p≤450GeV
- SppS(1981~) p+ $\bar{p} \sqrt{s} \le 640 \text{GeV}$
- FermiLab
 - Syncrotron(1972~) p-beam p≤400GeV
 - Tevatron(1981~) p-beam $p \le 0.9$ TeV
- p_T分布
 - High p_T では、 \sqrt{s} が大きくなるにつれて、 p_T分布の形の傾きは緩やか。
 - Low p_Tでは、傾きは√sによらずほぼー 定に収束している。

x_Tスケーリング

QCD理論によると、以下の仮定 - PDFFF**0** Q^2 **7**r-J**7**J- Coupling constant(α_s)がQ²に非依存。 Ns)"Ed³o/dp ا($\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$ n=**定数。**x_т=2p_т/√s - 定数nに対する予想 PHENIX Vs=200GeV • Leading order n=4 ♦ UA2 vs=540GeV • Next-to-leading order: $n=4+\alpha$ ▼ CCR √s=62.4GeV 10 ∆CCRS√s=62.4GeV • 過去の実験から n=6.3 (by R108 collaboration) ▲ R108(CCOR) √s=62.4GeV - x_T分布は√sに依存しない 0 R702√s=62GeV R806\s=62.8GeV →x_Tスケーリング □ R807(AFS) \s=63GeV ● Eggert et.al. √s=62.9GeV - ここでは、今回得られたデータと過去の データ \sqrt{s} >60GeVと比較して、 x_T スケーリ ングがn=6.3で成り立つかどうか見る。 10⁻² 10⁻¹ Xт x_Tスケーリングがn=6.3で成り立つ→パートン描像