Measurement of prompt photon in $\sqrt{s}=200$ GeV pp collisions with isolation cut method

烏井 久行 for the PHENIX Collaboration 理化学研究所 JPS meeting、高知大学

研究動機

- ・直接光子生成は、
 - 原子核中のパートン構造を知る上でよいプローブとなる。
 - ハドロン衝突における簡単なプロセスの一つ。
- なぜ、RHICにて直接光子測定を行うのか?
 - RHICは陽子陽子衝突としては最大エネルギー
 - これまでにないユニークな測定。
 - 将来または現在解析中の
 - QGP探索のための比較対象として。
 - 核子中のグルーオンスピンの測定のための基礎として。
- この発表では、
 - 一つ前の発表に引き続き、直接光子測定のための別の方法(isolation method)を試みる。
 - この方法によりS/N比を上げてより系統誤差の小さい測定が可能。
 - 二つのsignal (direct photon と fragmentation photon) を分けることが可能?
 - NLO-pQCD計算との比較。
 - これまで得られている陽子陽子衝突、陽子反陽子衝突における直接光子 測定との比較。

PDF/FFは主に deep inelastic scattering(DIS)/e++e-消滅反応で測定。

本研究では、これらのPDF/FFを使った next-to-leading order(NLO) pQCD計算との比較を行う

Strategy of Isolation Method

What is the efficiency by this cut for signal 1)&2) \rightarrow Next slide

Isolation Cutの効率

- なにが原因で効率/非効率を生み出すのか?
 - イベント構造によるもの
 - fragmentation photon は近くにジェットを伴うため効率は低いと予想される。
 - PHENIX検出器のアクセプタンスは完全ではない。
 - Underlying event **[よ3もの**
- Isolation cut による検出効率をMonte Carlo計算により見積もる。
 モデル依存の計算である。
 - PYTHIA simulationによる見積もり。
 - Signal(direct photon) : >90% for pT>5GeV/c
 - Signal(fragmentation photon)に関しては研究を進めている最中である。
 T.Horaguchi and K.Nakano are working for these items.
- この発表ではisolation cutによる効率の補正なしで、isolation methodで得られた結果をsubtraction method (前の岡田さん発表)の結果と比較してみる。
 - この比較により、direct/fragmentation photonの成分を分けることができないだろうか、ということを念頭に。

Event Selection and Analysis

- **Event Selection**
 - データはRHIC-run3 p+p データ (2003/Apr May)
 - 陽子ビームは longitudinally polarized at PHENIX. 偏極平均での測定。
 - 今回解析したデータは、ERTトリガー($E\gamma > 1.5 GeV/c$)にて取得。
 - 266pb⁻¹相当。
- Analysis procedure
 - 光子の選択
 - EM shower is photon-like
 - No charge hit on chambers in front of EMCal.
 - Isolation cut.
 - π⁰からくる(上の選択を通り抜けた)光子の寄与はデータ自身から見積もる。
 - ただし、検出器にて検出できなかったπ⁰からくる寄与ならびに他のハドロン (ω、η他)からくる寄与は
 - 過去の実験からの推定
 - 我々PHENIXでの測定(π^0 , η)
 - モンテカルロ計算
- Cross section calculation $E \frac{d^3 \sigma}{dp^3} = \frac{1}{L} \times \frac{1}{2\pi p_T} \times \frac{N_{photon}}{\varepsilon_{eff} \times \varepsilon_{acc} \times \varepsilon_{triggerbias}}$

S/N Ratio with Isolation Cut

- S/N ratio
 - S = 直接光子
 - N = 検出できなかったπ⁰か
 らくる寄与
- Isolation cutを掛けること により、S/N ratioが改善。
 - Subtraction method(岡田さ んトーク)と比較して約5倍。
 - 将来予定している直接光
 子を用いた陽子中グルー
 オン偏極量の測定に有効。
- 測定レンジ

 $- p_{\rm T} = 5-17 {\rm GeV/c}$

NLO-pQCD計算との比較

X_Tスケーリング則 QCD理論によると、以下の仮定 p+p collisions vs=20-1800GeV ● D0 p+p √s=1800GeV - PDFFF**0** Q^2 **7**r-J**7**JCDF p+p \s=1800GeV 迈10 UA2 p+p \s=630GeV - Coupling constant(α_s)がQ²に非依存。 e_{10} O UA1 p+p √s=630GeV ▲ UA1 p+p vs=546GeV △ UA6 p+p \s=24.3GeV 10 $\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$ 10 ≝.10 n=**定数。**x_т=2p_т/√s 10 相互作用項と構造を表す項に分離 10 →x_Tスケーリング 10 - 定数nに対する予想 10 • Leading order n=4 p+p collisions √s=20-200 GeV ▼ PHENIX-Run3 p+p √s=200GeV • Next-to-leading order: $n=4+\alpha$ 10 ♦ R806 p+p \s=63GeV ★ R110 рнр √s=63GeV x_Tスケーリング則n=5付近で成立 10 E706 p+p \s=38.7GeV ★ E706 p+p √s=31.5GeV 10 + UA6 p+p \s=24.3GeV 陽子反陽子衝突でも同様のスケーリン X NA24 p+p \s=23.75GeV • WA70 p+p \s=22.96GeV グ則が得られたことは、低いx_Tの領域 10 でクォークと反クォーク分布が似ている 10⁻² Хт 10⁻¹ ためではないかと推測される。

- Isolation method
 - を用いて、二つの寄与(direct/fragmentation)を分けることが可能か?
 - S/Nを大幅に改善。Subtraction methodと比較して約5倍。
 - 将来の陽子中グルーオン偏極量測定に有利。
 - モンテカルロ計算を用いた検出効率の見積もりを行っている。
- 測定結果
 - $p_T = 5-17 \text{GeV/c}$ を測定。陽子陽子衝突としては最大エネルギー。
 - Isolation methodによる結果はsubtraction methodと比較して予想ほど減少していない。
 - Fragmentation photon が isolation cutにより落とされていない。
 - Prompt photon 生成のほとんどが、direct photon 生成によるものである。

→さらなる研究を進めている最中。

- pQCD計算とスケール選択の範囲で一致。
 - This fact is very essential for the future analysis of ALL.
- x_Tスケーリング則がn=5付近で成立。
 - パートン描像を示唆。
 - 陽子反陽子衝突との違いは、小さいx_T領域で小さいのではないかと推定。

Backup Slides

Bias on Physics Process

- Two processes
 - Direct
 - Fragmentation

- Direct photon measurement at pT>5GeV/c is dominated by direct process.
 - The difference between two methods is small.

Ratio 0.8 Ratio Direct 0.7 0.6 0.5 0.4 Fragmentation 0.3 0.2 l 12 14 2 6 8 10 16 18 $p_{T}(GeV/c)$

Private communication with W.Vogelsang

Comparison with the RunII

- Comparison
- RunII and RunIII are consistent
- RunIII provide larger statistics
 - Pt = 5-18 GeV/c
 - Cross section 1 10^3
 pbGeV-2c3

Results

PHENIX Preliminary

16

X_T Scaling

- From eye-ball fitting,
 - n=6 shows better agreement
 - Between 20 200GeV
 - $x_T = 0.05 0.5$
- I'd like to emphasize that the present result covers x_T down to 0.05
 - We can go down lower x_T range in the future \rightarrow next slide.
- I'd like to show this comparison at JPS meeting.

xT-scaling with p+pbar data

Relativistic Heavy Ion Collider

PHENIX実験 **PH**^{*}ENIX **Pioneering High Energy Nuclear Interaction eXperiment** TIGE OF FLID MUSN TRACKIN -----BLOCTROMAGNETICS 全周3.8km 2リング 120bunch/ring 106ns crossing time 最大エネルギー 2 central Spectrometers 2 forward Spectrometers 250GeV for p(polarized) 衝突点、ルミノシティー、中心度を決めるための3つ 100GeV/nucleon for Au の detector がインストールされている。 Luminosity Beam Beam Counter(BBC) Au-Au : $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-2}$ Zero Degree Calorimeter(ZDC) $p-p: 2 \ge 10^{32} \text{ cm}^{-2} \text{ s}^{-2}$

 $6 \mathcal{O}$ Crossing point

Multiplicity and Vertex Detector(MVD)

電磁カロリーメータ

PbSc型力ロリーメータ

Sandwich type calorimeter Lead plates 55.2x55.2x1.5mmScintillator plates 110.4x110.4x4mmShish-kebab geometry wave shifter fiber readout 6x6 fibers $\rightarrow 1$ PMT = 1 tower 2 x 2 towers = 1 module 6 x 6 module = 1 super module 6 x 3 super module = 1 sector

	PbSc
Size(cm x cm)	5.52 x 5.52
Depth(cm)	37.5
Number of towers	15552
Sampling fraction	~ 20%
η cov.	0.7
φ cov.	90+45deg
η/mod	0.011
φ/mod	0.011
X ₀	18
Molière Radius	~ 3cm

PbSc sector 2.0m x 4.0m

PbG1型カロリーメータ

Lead Glass calorimeter Lead Glass 40x40x400mm used at WA98 exp. 4x6 towers = 1 super module 15*12 super module = 1 sector

	PbGI
Size(cm x cm)	4.0 x 4.0
Depth(cm)	40
Number of towers	9216
Sampling fraction	100%
η cov.	0.7
φ cov.	45deg
η/mod	0.008
∲/mod	0.008
X ₀	14.4
Molière Radius	3.68cm

PbGl sector 2.1m x 3.9m

ERT トリガー

- EMCal RICH level1 Trigger(ERT)
 - electron, di-electron, photon, high- $p_T \pi^{\pm}$ をトリガーする目的。
 - 本研究では、ERTのEMCal部分のみを使用
- ・ 電磁シャワーのエネルギーを得るために、タワー

 (5.5x5.5cm²[PbSc] 4x4cm²[PbGl])のエネルギーの合計をとる必要がある。
 - 2x2 towers non-overlapping sum (threshold=0.8GeV)
 - 4x4 towers overlapping sum (threshold=2 and 3GeV)
- 本研究でのπ⁰測定には、2x2 non-overlapping sumを使用。
 - Enhances high-pT π^0 by a factor of 50

PHENIX実験

NLO-pQCD計算との比較

- Next-to-leading order(NLO)
 pQCD計算のパラメータ
 - Parton distribution function(PDF): CTEQ6M
 - Fragmentation function(FF): KKP
 - Matrix calculation by Aversa, et. al.
 - Renormalization and factorization scales are set to be equal and set to

 $1/2p_{\rm T}, p_{\rm T}, 2p_{\rm T}$

 W.Vogelsangとのprivate communicationによる計算結果と 一致している。

得られたデータは、3つのスケールを用 いた計算結果の範囲で一致している。

過去のデータとの比較

陽子陽子衝突では最高エネルギー

- CERN

- ISR (1971~) p+p $\sqrt{s}=10-60$ GeV
- SPS(1977~) p-beam p≤450GeV
- SppS(1981~) p+ $\bar{p} \sqrt{s} \le 640 \text{GeV}$
- FermiLab
 - Syncrotron(1972~) p-beam p≤400GeV
 - Tevatron(1981~) p-beam $p \le 0.9$ TeV
- p_T分布
 - High p_T では、 \sqrt{s} が大きくなるにつれて、 p_T分布の形の傾きは緩やか。
 - Low p_Tでは、傾きは√sによらずほぼー 定に収束している。

x_Tスケーリング

QCD理論によると、以下の仮定 - PDFFF**0** Q^2 **7**r-J**7**J- Coupling constant(α_s)がQ²に非依存。 Ns)"Ed³o/dp ا($\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$ n=**定数。**x_т=2p_т/√s - 定数nに対する予想 PHENIX Vs=200GeV • Leading order n=4 ♦ UA2 vs=540GeV • Next-to-leading order: $n=4+\alpha$ ▼ CCR √s=62.4GeV 10 ∆CCRS√s=62.4GeV • 過去の実験から n=6.3 (by R108 collaboration) ▲ R108(CCOR) √s=62.4GeV - x_T分布は√sに依存しない 0 R702√s=62GeV R806\s=62.8GeV →x_Tスケーリング □ R807(AFS) \s=63GeV ● Eggert et.al. √s=62.9GeV - ここでは、今回得られたデータと過去の データ \sqrt{s} >60GeVと比較して、 x_T スケーリ ングがn=6.3で成り立つかどうか見る。 10⁻² 10⁻¹ Xт x_Tスケーリングがn=6.3で成り立つ→パートン描像