Photon Production

PHXENIX

Hisayuki Torii, RIKEN 2005 RHIC&AGS Annual User's Meeting 2005/Jun/21

Outlines

- Introduction
 - Why photon? in p+p d+Au Au+Au
- Experiment
 - Electro Magnetic Calorimeter
- Analysis and Results
 - p+p, d+Au, and Au+Au
- Conclusion

Duarteau of Pasis, h Errardo Darageado, Sector

Why Photon (p+p)?

- Photon in p+p is a good probe for the parton structure.
 - Leading process
 - Higher order
 - Bremsstrahlung Process
- Why RHIC?
 - RHIC provides the highest energy as p+p collisions.
 - Very unique
 - As a basic for gluon spin measurement in the future.
 - A reference for d+Au and Au+Au.

Photon in p+p is

a testing ground of pQCD

Why Photon (d+Au)?

- Nuclear Effect
 - Initial Parton Distribution
 - kT
 - (EMC effect)
 - (Shadowing, anti-shadowing)
 - (color glass condensate)
 - Final Parton Interaction
 - Multiple Scattering
 - Jet Quenching
 - \rightarrow Photon is less sensitive.

FNAL-E706 concluded kT=~1.3GeV/c in pBe collisions

Photon in d+Au is a good probe for modification of initial distribution

Why Photon (Au+Au)?

- Photon source
 - pQCD photons
 - Compton
 - Annihilation
 - Bremsstrahlung
 - Photons from jet quenching
 - Thermal photons
 - From hadron GAS
 - From QGP

Thermal photon is a good probe for QGP temperature

→ Target 1-3GeV

Realistic Calculation

PHENIX

- 3.8km with 2 rings
 - 120bunch/ring
 - 106ns crossing time
- Maximum energy
 - 250GeV for p(polarized)
 - 100GeV/nucleon for Au
- Luminosity
 - Au-Au : $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-2}$
 - $p-p: 2 \ge 10^{32} \text{ cm}^{-2} \text{ s}^{-2}$
- 6 Crossing points

2 central Spectrometers

2 forward Spectrometers

- 3 detectors to measure the collision point, the luminosity, and the multiplicity.
 - Beam Beam Counter(BBC)
 - Zero Degree Calorimeter(ZDC)
 - Multiplicity and Vertex Detector(MVD)

p+p

Prompt Photon Production

Prompt photon production consists of two processes

Compton/Annihilation process

In this talk, we compare our result with next-to-leading order(NLO) pQCD calculation

How to Measure?

No one know which photon from what.

Background Non-vertex Photon Neutral hadron contribution Noise in the detector Hadron(π⁰,η,ω..) decay

Estimate all backgrounds

After subtracting all backgrounds,

the remained photons are the signals.

Background from π^0

By taking all combination between the target photon and the surrounding photons, we can know the photon from pi0 decay.

 \rightarrow 70% of pi0 decay can be identified from the mass distribution

Result

Comparison with Other Experiment

x_T Scaling

- From QCD, if
 - Q²-Scaling of PDF,FF
 - No running coupling constant(α_s)

$$\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$$

n=constant_o $x_T = 2p_T / \sqrt{s}$

- Can be express as two terms
 - Interaction
 - Structure
- If leading order n=4
 - Next-to-leading order: $n=4+\alpha$

 x_{T} -Scaling n=~5

d+Au

Result

- The analysis method is similar to p+p
- NLO pQCD Calculation
 - p+p collisions
 - Calculated by W.Vogelsang
 - CTEQ6M
 - Scale(renormalization and factorization scale) 0.5,1.0,2.0pT
- In comparison with d+Au
 - Averaged number of collisions (8.42) from the Glauber model was multiplied to the calculation.

Result is consistent with the binary – scaled NLO-pQCD calculation

16

Result

Au+Au

Background Photons

- The main source of background is π0
- Thanks to large suppression (factor~5) of 0 yield at RHI(energy, we have an advantage to pick up the direct photon.

 π^0 suppression help to reduce photon background

Cancel Systematic Error

Direct photon yield
= Excess from bg photons

$$R = \frac{\left(\gamma/\pi^{0}\right)_{measured}}{\left(\gamma/\pi^{0}\right)_{calculated}} = \frac{\gamma_{measured}}{\gamma_{background}}$$

- Double ratio has an advantage
 - because in the ratio of the actual point by point π^0 and inclusive γ measurements will cancel many systematics

Results

Conclusion

- p+p collisions
 - NLO pQCD calculation can describe our data
 - Sum of direct part and fragmentation part.
 - Fit in xT scaling with other experiment
- d+Au collisions
 - comparison with NLO-pQCD
 - Result in d+Au collisions is consistent with the binary-scaled NLO-pQCD calculation.
 - Nuclear Modification Factor
 - Consistent with $1 \rightarrow$ No modification within the errors
 - Prompt photon production in d+Au can be described as binary scaling
 - Result is consistent with $\pi 0$

Conclusion

- Au+Au collisions.
 - High pT photon
 - Binary Scaling and pQCD calculation
 - Consistent with 1
 - No modification within the errors
 - Support jet quenching scenario observed as pion suppression
 - No thermal photon signal yet.
 - We're analyzing the run4 Au+Au data. Plan to have the preliminary result.

Backup slide

PbSc EM Calorimeter

Sandwich type calorimeter Lead plates 55.2x55.2x1.5mmScintillator plates 110.4x110.4x4mmShish-kebab geometry wave shifter fiber readout 6x6 fibers $\rightarrow 1$ PMT = 1 tower 2 x 2 towers = 1 module 6 x 6 module = 1 super module 6 x 3 super module = 1 sector

PbSc
5.52 x 5.52
37.5
15552
~ 20%
0.7
90+45deg
0.011
0.011
18
~ 3cm

PbSc sector 2.0m x 4.0m

PbGl EM Calorimeter

	PbGI
Size(cm x cm)	4.0 x 4.0
Depth(cm)	40
Number of towers	9216
Sampling fraction	100%
η cov.	0.7
φ cov.	45deg
η/mod	0.008
¢∕mod	0.008
X ₀	14.4
Molière Radius	3.68cm

Lead Glass calorimeter Lead Glass 40x40x400mm used at WA98 exp. 4x6 towers = 1 super module 15*12 super module = 1 sector

PbGl sector 2.1m x 3.9m

Photon from run2 p+p

PHYSICAL REVIEW D 71, 071102 (2005)

р_т(GeV/*с*)