A_{LL} of π^0 and Direct Photon Cross Section Measurements at PHENIX

PH¥ENIX

Hisayuki Torii, RIKEN 5th Circum-Pan-Pacific Symposium on High Energy Spin Physics 2005/July/7

Outlines

- Experiment
 - PHENIX
 - Electro Magnetic Calorimeter
- Analysis and Results
 - $A_{LL} \text{ of } \pi^0$
 - Direct photon cross section
- Conclusion

Supervisional Paulo, h Revenued Discographic Sectors

RHIC spin @ BNL

History

Run	Year	Species	s ^{1/2} [GeV] ∫Ldt	N _{tot}	p-p Equivalent	Data Size
01	2000	Au+Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au+Au	200	24 µb ⁻¹	170M	1.0 pb ⁻¹	10 TB
		p+p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d+Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹ Longitu	46 TB dinal Pol.
		p+p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB
04	2003/2004	Au+Au	200	241 µb ⁻¹	1.5G	10.0 pb ⁻¹	270 TB
		Au+Au	62	9 μb ⁻¹	58M	0.36 pb ⁻¹ Longitudi	nal Pol.
		p+p	200	0.075 pb ⁻¹	G	0.075 pb ⁻¹	10 TB
05	2004/2005	Cu+Cu	200	? pb ⁻¹	G	pb ⁻¹ pitudinal & Transv	TB erse Pol.
		p+p	200	3.8 pb ⁻¹	G	3.8 pb ⁻¹	260 TB

A_{LL} of π^0

Introduction : A_{LL} of π^0

A_{LL} in $\pi 0$ production

Cross section

π^0 reconstruction for A_{LL}

- Results obtained for four pT bins from 1 to 5 GeV/c
 - π^0 peak width is 9.5-12 MeV/c²
 - Background contribution under π^0 peak varies from 27% to 8%
 - π⁰ reconstruction efficiency varies from 84% to 93%

Background contribution at higher p_T is small.

→ Still need estimate the effect

π^0 counting & background

 $N_{\pi 0}$: ±25 MeV/c² around π⁰ signal N_{bck1} : Two 50 MeV/c² wide areas adjacent to π⁰ peak

$N_{\pi 0}$	and	N _{bck}	accumul	lated	statisti	CS

pt GeV/c	Ν _{π0} 25 MeV/c ²	N _{bck1}
1-2	1777k	1470k
2-3	1059k	335k
3-4	201k	27k
4-5	38k	3.9k

$$A_{LL}^{\pi^{0}} = \frac{A_{LL}^{FG+BG} - rA_{LL}^{BG}}{1 - r} \sigma_{A_{LL}^{\pi^{0}}} = \frac{\sqrt{\sigma_{A_{LL}^{raw}}^{2} + r^{2}\sigma_{A_{LL}^{BG}}^{2}}}{1 - r}$$

r = normalized counts of background [(red)/(blue)]

A_{LL} & Systematic Studies

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{|P_B P_Y|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

$$\delta_{A_{LL}} = \frac{1}{|P_B P_Y|} \frac{1}{\sqrt{N_{++} + N_{+-}}}$$

Bunch shuffling = Randomly assigns helicity for each crossing

Widths are consistent with obtained errors $\delta(A_{LL})$

Comparison with theory

$\pi^0 A_{LL}$ Expectations from Run05

Run05 will distinguish between GRSV-std and $\Delta G = 0$ (or GRSV-min).

Direct Photon Production

Prompt Photon Production Prompt photon production consists of two processes $\sigma = \sigma_{dir} + \sigma_{frag} = \sum_{i,j,k} \int dx_i dx_j \times f_1^i(x_i,\mu) \cdot f_2^j(x_j,\mu) \quad \text{parton distribution} \\ \text{function(PDF)}_{\text{fragmentation function(FF)}}$ $\times \left\{ \sigma(i+j \to \gamma) + \int dz \, \sigma(i+j \to k) \times D_k^3(z_k, \mu_F) \right\}$ **Direct Process Bremsstrahlung Process** compton annihillation Higher Order gluon compton process dominant ~75% and accessed accessed 0000000 10000000 \rightarrow Sensitive to the gluon polarization.

How to Measure?

No one know which photon from what.

Background Non-vertex Photon Neutral hadron contribution Noise in the detector Hadron(π⁰,η,ω..) decay

Estimate all backgrounds

After subtracting all backgrounds,

the remained photons are the signals.

Background from π^0

By taking all combination between the target photon and the surrounding photons, we can know the photon from pi0 decay.

 \rightarrow 70% of pi0 decay can be identified from the mass distribution

Background Subtraction

- Background photon from Identified π^0
 - $-\pi^0$ mass distribution
 - The mass position and width is well discribed by the Monte $\operatorname{Car}_{40}^{\mathbb{H}^{1}}$.
 - All channels (as defined as healthy) are working properly $_{\circ}$
 - No π^0 is miss-identified.
 - Systematic error in estimate of combinatorial background is small(3%)
- Background photon from π^0 going to out of our fiducial area.
 - Estimated by Monte Carlo simulation
 - Systematic error due to lack of knowledge in Monte Carlo is taken an account of. The largest contribution is due to the edge of sector.
- Photon from other hadrons
 - Measurement of η/π^0 ratio at PHENIX is used.
 - Assumption of mT scaling for other hadron
- Neutral hadron and photons from non-vertex.
 - Estimated from GEANT simulation

Result

Comparison with Other Exp.

What is the efficiency by this cut for signal 1)&2) \rightarrow Next slide 22

S/N Ratio with Isolation Cut

- S/N ratio
 - S = Direct photon
 - N = Remained Bg. Photon
- Isolation cut help to reduce S/N ratio
 - 5 times better than the subtraction method
 - $p_{\rm T} = 5-17 {\rm GeV/c}$

Isolation cut is useful for the future measurement of ALL in direct photon

р_т(GeV/*с*)

Prospect of Photon A_{LL} from Run5

- Direct photon
 - Based on 10pb⁻¹ 50% pol.
 - The error will be larger by factor ~2.
- Need more statistics.

PHENIX run5 Status

New result will be available this fall!!!

 $\pi 0$

Direct Photon

Inclusive Cross Section Consistent with NLO-pQCD Consistent with NLO-pQCD

A_{LL} in RUN3&4

Favor GRSV-std than GRSV-max

Need more statistics

 $A_{LL} \text{ in } RUN5$ Will distinguish GRSV-std and $\Delta G = 0$

more, more

Backup slide

PbSc EM Calorimeter

Sandwich type calorimeter Lead plates 55.2x55.2x1.5mmScintillator plates 110.4x110.4x4mmShish-kebab geometry wave shifter fiber readout 6x6 fibers $\rightarrow 1$ PMT = 1 tower 2 x 2 towers = 1 module 6 x 6 module = 1 super module 6 x 3 super module = 1 sector

PbSc
5.52 x 5.52
37.5
15552
~ 20%
0.7
90+45deg
0.011
0.011
18
~ 3cm

PbSc sector 2.0m x 4.0m

PbGl EM Calorimeter

Lead Glass calorimeter
Lead Glass 40x40x400mm
used at WA98 exp.
4x6 towers = 1 super module
15*12 super module = 1 sector

	PbGI
Size(cm x cm)	4.0 x 4.0
Depth(cm)	40
Number of towers	9216
Sampling fraction	100%
η cov.	0.7
φ cov.	45deg
η/mod	0.008
¢∕mod	0.008
X ₀	14.4
Molière Radius	3.68cm

PbGl sector 2.1m x 3.9m

• NLO corrections are now known for all relevant $A_{LL} \propto \frac{\Delta q}{q} \frac{\Delta G}{G} a_{ll} (qg \to qg)$

Comparison with Other Experiment

x_T Scaling

- From QCD, if
 - Q²-Scaling of PDF,FF
 - No running coupling constant(α_s)

$$\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$$

n=constant_o $x_T = 2p_T / \sqrt{s}$

- Can be express as two terms
 - Interaction
 - Structure
- If leading order n=4
 - Next-to-leading order: $n=4+\alpha$

 x_{T} -Scaling n=~5

Systematic check: bunch shuffling

Bunch shuffling = Randomly assigns helicity for each crossing

PHENIX run5

•At least another order of magnitude needed...

γ trigger efficiency for π^0

- p0 efficiency plateaus for pT>4 GeV/c
- Limited efficiency at pT<4 GeV/c:
 - 1-2 GeV/c: 6%
 - 2-3 GeV/c: 60%
 - 3-4 GeV/c: 90%
 - 4-5 GeV/c: 95%
- Monte Carlo reproduces Data well

 $\pi^0 p_T (\text{GeV/c})$

破砕関数の比較

- ・データと他のFFを用いた NLO-pQCD計算との比較。
 - FFとして、Kretzer, BKK, KKP を使用
 - BKKとKKPを用いた計算は
 データと一致
 - Kretzerを用いた計算は pT<8GeV/cにおいてデータより 低く見積もっている。
 - この大きな違いは、gluonからの破砕関数にある。
 - Gluonとquarkジェットの寄与 は、pi0 pT=8GeV/c辺りでクロ スする。

過去のデータとの比較

陽子陽子衝突では最高エネルギー

CERN

- ISR (1971~) p+p $\sqrt{s}=10-60$ GeV
- SPS(1977~) p-beam p≤450GeV
- SppS(1981~) p+ $\bar{p} \sqrt{s} \le 640 \text{GeV}$
- FermiLab
 - Syncrotron(1972~) p-beam p≤400GeV
 - Tevatron(1981~) p-beam $p \le 0.9$ TeV
- p_T分布
 - High p_T では、√sが大きくなるにつれて、 p_T分布の形の傾きは緩やか。
 - Low p_Tでは、傾きは√sによらずほぼー 定に収束している。

x_Tスケーリング

- ・QCD理論によると、以下の仮定
 - PDFとFFのQ²スケーリング
 - Coupling constant(α_s)がQ²に非依存。

$$\sigma = \left(\sqrt{s}\right)^{-n} \times F(x_T)$$

n=定数。
$$x_T=2p_T/\sqrt{s}$$

- 定数nに対する予想
 - Leading order n=4
 - Next-to-leading order: $n=4+\alpha$
 - 過去の実験から n=6.3 (by R108 collaboration)
- x_T分布は√sに依存しない

 → x_Tスケーリング
 - ここでは、今回得られたデータと過去の データ√s>60GeVと比較して、x_Tスケーリ ングがn=6.3で成り立つかどうか見る。

x_Tスケーリングがn=6.3で成り立つ→パートン描像

\sqrt{s} Dependence with NLO-pQCD

グルーオンからの破砕関数

本研究によりgluonからの破砕関数、特にz>0.5の領域 に対し情報を与えることが出来た。

•将来の課題

-NNLO

–Initial k_T

-Multi-jetイベントにおけるJet-jet final interaction

•Space and time evolution of the color field

LEP2の結果から

hep-ex/0404026

Gluon polarization

- A_{LL} projection
 - $-\pi^0$ and direct photon at PHENIX
 - mid-rapidity $|\eta| < 0.35$, $\sqrt{s} = 200 \text{ GeV}$
 - 2005 2009 runs

Gluon polarization

- A_{LL} projection – jet at STAR
 - $-1 < \eta < 2$
 - $\sqrt{s} = 200 \text{ GeV}$
 - 2005 run

- coincidence channels
 - dijet, π^0 - π^0 , γ -jet, γ - π^0
 - reconstruction of partonic kinematics

expect: sensitivity to sign of Δg , e.g., positive Δg : $A_{\rm LL}^{\pi^+} > A_{\rm LL}^{\pi^0} > A_{\rm LL}^{\pi^-}$

•5-15 GeV $\pi\pm$ identified by RICH and EMC hadronic shower •Not yet possible to determine sign of Δg

Even with a limited acceptance in PHENIX central arm, we can capture most of a Jet. \rightarrow Tag one photon, sum all energy in one arm.

Question :

1. Are those really jets? (agreement much worse at low p_T)

2. How much fraction (Z) do we catch? How much is its ambiguity (ΔZ)?

Compared to pi0:

- More statistics, but Systematic uncertainty in interpretation

Cross section

- perturbative QCD applicable ?
 - dependence of the calculated cross section on μ represents an uncertainty in the theoretical

Photon from run2 p+p

PHYSICAL REVIEW D 71, 071102 (2005)

Result

- The analysis method is similar to p+p
- NLO pQCD Calculation
 - p+p collisions
 - Calculated by W.Vogelsang
 - CTEQ6M
 - Scale(renormalization and factorization scale) 0.5,1.0,2.0pT
- In comparison with d+Au
 - Averaged number of collisions (8.42) from the Glauber model was multiplied to the calculation.

Result is consistent with the binary – scaled NLO-pQCD calculation

49

Result

