

Global/Hadron physics at PHENIX

Kensuke Homma Hiroshima University

Hadrons reflect the bulk property of collision system and its evolution. High p_T hadrons carry information at the early stage of the evolution.

PHENIX Central Arm

PID by high resolution TOF

- $\cdot \pi$, K < 2 GeV/c
- proton, anti-proton < 4 GeV/c
- $\Delta \phi = \pi/4$

 $\pi 0$ measurement by EMCal

- .1 < pt < 10 GeV/c
- .6 lead- scintillator (PbSc) sectors
- .2 lead- glass (PbGl) sectors
- $\cdot |\eta| < 0.38$ at midrapidity, $\Delta \phi = \pi$

Focus of this talk

■ **How the collision system evolves?**

- Initial energy density (Nch and E_T)
- Collective expansion ($\langle p_T \rangle$, Single particle spectra)
- How the system freeze-out? (HBT puzzle)

What happens at the early stage?

- Indication of early thermalization (Elliptic flow)
- Quark/gluon propagation in the dense medium
 - Evidence for jets in Au+Au collisions
 - Suppression of high p_T hadrons
 - Baryon/meson ratio in high p_T range

Initial energy density

- Charged particle multiplicity and transverse energy significantly higher at RHIC compared to SPS.
- N_{ch} and E_T per participant pair increases w.r.t. participants (centrality).

Large contributions from binary collisions (hard scattering).

• Energy density in 2% most central collisions

$$\varepsilon = \frac{1}{\pi R^2 \tau_0} \cdot \frac{dE_T}{d\eta}$$

$$\approx 5.5 \,\mathrm{GeV} \,/\,\mathrm{fm}^3 / \left(\frac{\tau_0}{\mathrm{fm} \,/\,c}\right) @ 200 \,\mathrm{GeV}$$

 ε is larger than $\varepsilon_{critial} \sim 1 \text{GeV}$

Model comparison

Naïve hard&semi-hard two component model (HIJING) is excluded.

KLN
D.Kharzeev and M. Nardi, Phys.Lett. B503, 121
(2001)
D.Kharzeev and E.Levin,
Phys.Lett. B523, 79 (2001)
Mini-jet
S.Li and X.N.Wang Phys.Lett.B527:85-91 (2002)

High energy QCD gluon saturation model (KLN) and two-component mini-jet model with nuclear shadowing (Mini-jet) are favored.

Collective Expansion

- $\langle p_T \rangle$ increases with N_{part} and particle mass => radial expansion.
- Consistent with hydrodynamic expansion picture.

Collective Expansion

PH#ENIX

- Single particle p_T spectra -

- Simultaneous fit in range $(m_t m_0) < 1 \text{ GeV}$ is shown.
- The top 5 centralities are scaled for visual clarity.
- Similar fits for positive particles.

Result of hydrodynamic model fit

9

Most central collisions for 200 GeV data

Freeze-out Temperature(*)

$$T_{fo} = 110 \pm 23 \text{ MeV}$$

Transverse flow velocity(*)

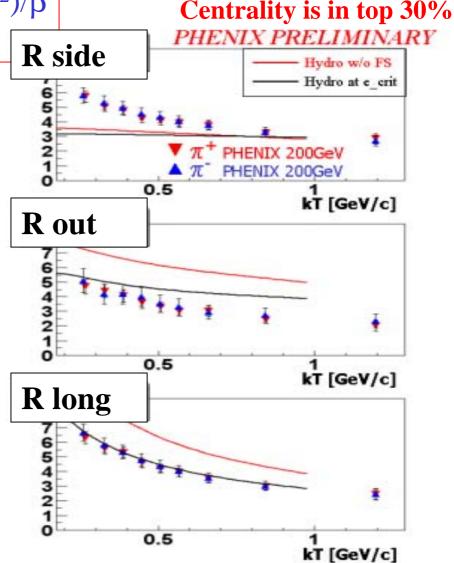
$$\beta_{\rm T} = 0.7 \pm 0.2$$

(*) Resonance feed down is not corrected.

Ref: E. Schnedermann, J. Sollfrank, and U. Heinz, Phys. Rev. C 48, 2462 (1993)

• β_T increases from peripheral to mid-central (N_{part} < 150) and tends to saturate for central collisions.

HBT puzzle


Why duration time $\tau = \operatorname{sqrt}(R_{out}^2 - R_{side}^2)/\beta$ of the freeze-out is so short?

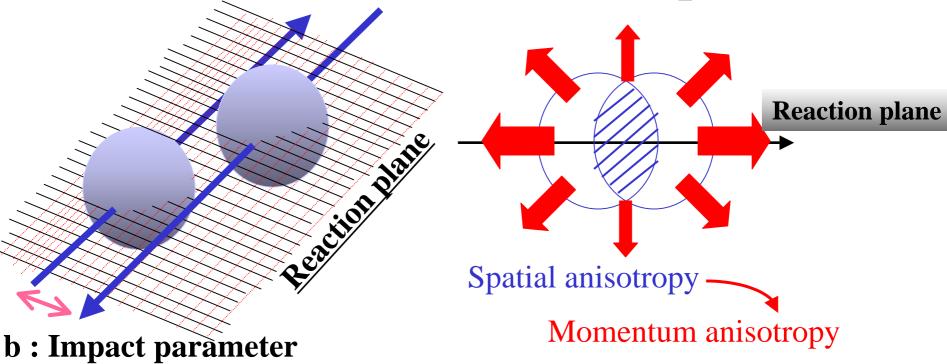
- Hydro w/o Free Streaming
- Standard initialization and freeze out which reproduce single particle spectra.
- ——— Hydro at e_{crit}
- Assuming freeze out directly at the hadronization point. $(e_{dec} = e_{crit})$

kT dependence of R_{long} indicates the early freeze-out?

Any initial conditions in hydro. can not solve the small Rside.

Recent hydrodynamic calculation by U.Heinz and P. F. Kolb (hep-ph/0204061)

 k_T : average momentum of two particles



What happens at the early stage?

Early thermalization?

- Strong elliptic flow v₂-

$$dN/d\phi = N [1 + \sum 2v_n cos(n\phi)]$$

 v_n : anisotropy parameter

v_2 of identified hadrons (π, K, p)

Au+Au at sqrt(s_{NN}) =200GeV, Minimum bias, Reaction Plane | η |=3~4

 v_2 saturates in $p_T > 2GeV/c$.

A hydrodynamic model agrees with data in p_T<2GeV/c!³

Quark&Gluon in dense medium

- Jets in p+p -

• Jet structure was observed in azimuthal correlation in pp at sqrt(S_{pp})=200GeV.

- •black = pair distribution
- •green = mixed event pair distribution
- •purple = bkg subtracted distribution

Evidence for jets in Au+Au

- Use p-p analysis as a reference for Au-Au jet signal
- Correlation seen simultaneously in $\Delta \varphi$ and $\Delta \eta$ (Jet Cone)

- In p_T 2-4 GeV/c, Jet-Like Signal dominates over elliptic flow component.
- This Jet-Like Signal approx. flat with centrality (no systematic errors yet)

More evidence for jets

0.04 in peak

0.05 in peak

PHENIX Preliminary

1.5 < pt < 2.0

PHENIX Preliminary

 $C(\Delta \phi)$

- Charged-Charged Correlation =

- •Correlation for charged hadrons.
- Observe large asymmetry
- •Fit to gaussian $+\cos 2\phi$.
- •Width of gaussian peak vs. pt.
- •For a jet, the transverse momenta $\langle j_T \rangle \sim 400$ MeV, independent of pt (dashed curve below).

Discovery of high p_T Suppression PHIENIX

Nuclear Modification Factor

$$R_{AA} \equiv \frac{d^2N^{AA}/dydp_T}{d^2N^{\rho\rho}/dydp_T \cdot \langle N_{coll}^{AA} \rangle}$$

- $R_{AA} = 1$ scale with # of binary collisions
- $R_{AA} > 1$ Cronin effect observed in ISR and SPS
- R_{AA} <1 Suppression was discovered in RHIC@130GeV

p_T distributions in peripheral & central PH ENIX

Different strength of suppressions

- Different suppressions ?
- -- Charged hadrons
- -- Charged pions
- -- Neutral pions
- π⁰/(h⁺+h⁻)/2 ratio ~ 0.5 up to 9 GeV/c

Baryon/meson ratio

 Enhancement of p and pbar by the baryon transport via gluon junctions?

I. Vitev and M. Gyulassy, PRC65(2002)041902

Summary and Prospects

- \triangleright Initial energy density reached $\sim 5.5 \text{GeV/fm}^3$ at $\text{sqrt}(S_{NN}) = 200 \text{GeV}$.
- ➤ Naïve mini-jet model (HIJING) was excluded in Nch(200)/Nch(130).
- ➤ Hydrodynamic collective expansion well describes the system evolution in p_T < 2GeV, but does not satisfactorily describe the short duration time of freeze-out in HBT and elliptic flow in pt>2GeV.
- > Jets were observed well above elliptic flow effect in Au+Au collisions.
- ➤ Qualitatively same suppressions of high p_T hadrons were observed both in 130 GeV and 200 GeV.
- \triangleright Different strength of suppressions were observed. $\pi^0/h^{\pm}/2$ was ~0.5.
- Enhancement of p and pbar to pion yield in high p_T range was observed.

Why protons are not so much suppressed? What is the source of high p_T protons, from trivial jet fragments or non trivial collective source? We need to investigate it in further higher p_T region !!!²¹

Back up slides

Centrality Determination

- Event characterization in terms of impact parameter (b) in Au+Au collisions.
 - Large : peripheral collision
 - Small: central collision
- Coincidence between BBC and ZDC.
 - Determine collision centrality.
 - 92 % of inelastic cross section can be seen.
- Extract variables using Glauber Model
 - Number of participants (N_part).
 - Number of nucleons participate in a collision.
 - Represents centrality.
 - Related with soft physics.
 - Number of binary collisions (*N_binary*)
 - Number of Nucleon-Nucleon collisions.
 - Related with hard physics.
 - Incoherent sum of N-N collisions becomes a baseline for A-A collisions.

Bertsch-Pratt source radii

$$C_{2} \equiv 1 + \lambda exp \left(-R_{side}^{2} q_{side}^{2} - R_{out}^{2} q_{out}^{2} - R_{long}^{2} q_{long}^{2} \right)$$

$$In \ LCMS \ frame$$

$$\Delta \tau = \sqrt{R_{To}^{2} - R_{Ts}^{2} / \beta}$$

$$Detector$$

$$X$$

$$Z$$

$$Au$$

$$Source$$

$$R_{long}$$

$$R_{L}$$

$$Source$$

$$R_{side}$$

$$R_{side}$$

$$R_{side}$$

$$R_{rout}$$

$$R_{rout}$$

$$R_{rout}$$

$$R_{rout}$$

$$R_{rout}$$

Beam axis

Beam axis

High p_T Neutral Pion Suppression – PHIENIX Comparison To Theory

• pQCD calculations:

- P. Levai,Nucl.Phys.A698 (2002) 63
- X.N. Wang,Phys.Rev.C61 (200) 06491
- I. Vitev, talk at QM2002
- so far suppression not described by theories
 - calculations without energy loss completely off
 - energy loss calculations show different p_T dependence

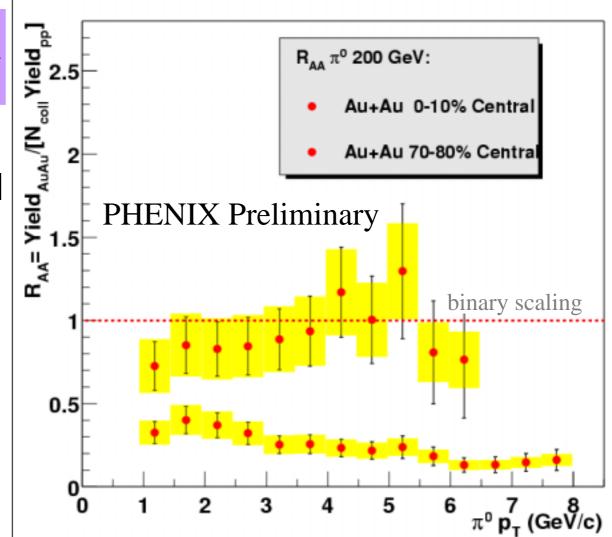
130 vs 200 GeV/c

Higher statistic allow to reach higher transverse momenta.

Qualitatively the same effect is present

Increased magnitude or different particle composition?

Nuclear Modification Factor



$$R_{AA}(p_T) = \frac{1/N_{events} d^2N^{AA}/dp_T d\eta}{\langle N_{binary} \rangle (d^2\sigma_{pp}/dp_T d\eta/\sigma^{pp}_{inelastic})} =$$

$$\frac{\text{Yield}_{\text{peripheral}}/\langle N_{\text{binary}}\rangle_{\text{peripheral}}}{\text{Yield}_{\text{pp}}}$$

Comparison of peripheral to central

RHIC 200 GeV
central Suppression
peripheral N_{coll} scaling

Evidence for jets in Au+Au

In p_T 2-4 GeV/c, the jet-like picture dominates across all centralities, with little contribution from an elliptic flow component.