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Physics Motivation
Shed light on the study of the properties of QGP.

Discovery the “strong coupled QGP”.
Early thermalization, Perfect Fluid

Hard Probe is a powerful tool to study the initial 
stage of collisions and evolution of later hot and 
dense medium.

High pT Jets Discovery of “Jet Quenching”
Gluon Density (dNg/dy ) = 1000 ~ 1200

Heavy Quarks Discovery of “strong suppression, flow”
Medium is dense and strong coupled even for heavy quarks!

Quarkonium
Probe to “measure” the Temperature (Gluon density) in the 
medium.
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Quarkonium is “Thermometer”
Color Debye Screening

Different Tdiss for 

different quarkonia.
The quarkonium suppression 

pattern may be able to serve 
as a QGP thermometer.

Recent Lattice QCD results
J/ψ would survive at RHIC!?
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H. Satz, J. Phys. G32, R25 (2006) 

Datta & al, hep-lat/0409147
Alberico & al, hep-ph/0507084
Wong, hep-ph/0408020
← Satz, hep-ph/0512217
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Feed Down Effect
Without the direct measurement  

of ψ’ and χc, we can extract the 
temperature in the medium!

40% J/ψ come from ψ’ and χc.
J/ψ ~ 0.6 J/ψ + 0.3χc + 0.1ψ’

HERA-B exp. Phys. Lett. B 561(2003)

J/ψ suppression pattern gives
the information of melting ψ’
and (or) χc. ( Temperature)

J/ψ suppression at SPS can be 
described by feed down effect.

5RHIC AGS Users Meeting 2006/6/6, T. Gunji 



hep-ph/0311048
(CERN yellow rpt)

statistical hadronization model

Ncc = 28

Ncc = 19

Ncc = 12

The story is not simple!
New Scenario of J/ψ production in HIC at RHIC!

Negligible at SPS.
Recombination of J/ψ from

uncorrelated cc pairs.
Probability : Ncc

2/Nh 

Ncc(Nh) scales with Ncol(Npart). 
Ncc grows faster with CMS energy.

Need to understand charm production and 
its modification in the medium.

Have strong impact to recombination
Cross section vs. Rapidity
Charm energy loss
Charm flow
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Talked by R. Averbeck.



The story is not simple! (cont.)
J/ψ yield could be modified in cold nuclear matter.

From Initial conditions of nuclei: 
Gluon Shadowing

Depletion of Gluon PDF in nuclei at small x.

Gluon Saturation (Color Glass Condensate)
High density gluons at small x in nucleon.

Saturation : gg g process is dominant
Depletion of small x gluons.
Larger effect for Heavier nuclei. 

From the nuclear environments after the collisions:
Nuclear Absorption

J/ψ or pre-resonance cc state vs. spectators 

Cronin effect
Initial state multiple scattering of partons 

RHIC AGS Users Meeting 2006/6/6, T. Gunji 7

Eskola et al. NP A696, 729 (2001)



PHENIX Experiment
PHENIX Can Measure J/ψ in wide y coverage.
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Central Arms:
Hadrons, photons, electrons

J/ψ e+e-
|η|<0.35
Pe > 0.2 GeV/c
∆φ = π (2 arms x π/2)

Muon Arms:
Muons at forward rapidity

J/ψ µ+µ−
1.2< |η| < 2.4
Pµ > 2 GeV/c
∆φ = 2π



Recorded data
History of J/ψ measurement by PHENIX
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324 nb-1200 GeVp-p

~ 60 + 200On Going190 mb-163 GeVCu-Cu2005

~ 1500 + 10000On Going3.8 pb-1200 GeVp-p

~ 13analysis9.1 µb-163 GeVAu-Au2004

~ 1000 + 5000 [4]preliminary240 µb-1200 GeVAu-Au

~ 1000 + 10000 [4]preliminary4.8 nb-1200 GeVCu-Cu

+ 2 muon arms

Central

+ 1 muon arm

Central

Status

130 + 450 [3]

360 + 1660 [3]

46 + 66 [2]

13 + 0 [1]

J/ψ (ee + µµ)

0.35 pb-1

2.74 nb-1

0.15 pb-1

24 µb-1

Luminosity

200 GeVp-p2003

200 GeVd-Au2002

200 GeVp-p2002

200 GeVAu-Au2001

√sNNIonsYear

[1] PRL92 (2004) 051802
[2] PRC69 (2004) 014901
[3] PRL96 (2006) 012304
[4] QM05, nucl-ex/0510051



J/ψ in p+p, d+Au and A+A 
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p+p collisions
• Base line for all the measurements
�σJ/ψ vs. rapidity, pT

d+Au collisions
• Initial stage effect

• Gluon shadowing and Gluon Saturation
• Nuclear medium effect

• Nuclear absorption and Cronin effect
• Base Line for A+A collisions
�σJ/ψ vs. rapidity, pT, XAu

A+A collisions
• Extract the medium effect

• Color screening and Recombination
�σJ/ψ (yield) vs. rapidity, pT, 
collision centrality , species(Au/Cu)
collision energy(200/62.4 GeV)



J/ψ Measurement in p+p 
collisions

Production Mechanism 
Base line of the J/ψ 

measurement in d+Au and A+A.
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J/ψ production in p+p
Cross section vs. y

Consistent with Pythia calculation 
σ = 2.61+-0.20(fit)+-0.26(abs) µb

Cross section vs. √s
Consistent with COM model

Base Line for A+A
Nuclear modification factor

RAA =1 (without medium effect)

RAA =
dNJ/ψ

AA/dy
dNJ/ψ

pp/dy <Ncoll>x
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J/ψ Measurement in d+Au 
collisions

Extraction of Cold Matter Effect
What we have learned on Cold 

Matter Effect?
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XAu and Shadowing
Three rapidity ranges probe different x of Au partons

South (y < -1.2) : large x2 (in gold)   ~ 0.090 (Anti-shadowing)
Central (y ~ 0) : intermediate x2        ~ 0.020
North (y > 1.2) : small x2 (in gold)    ~ 0.003 (Shadowing)
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x1 x2

J/ψ at
y > 0

x1 x2

J/ψ at
y < 0

rapidity y

Eskola et al. NPA696 (2001) 729

An example of gluon shadowing prediction

gluons in Pb / gluons in p

x

Anti
Shadowing

Shadowing
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0 mb

3 mb

Low x2 ~ 0.003
(shadowing region)

RdAu

Shadowing and Nuclear Absorption
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(in gold) = Xd - XAu

α vs. XAu, XF RdAu vs. Rapidity σdAu = σpp (2x197)α

Shadowing and Absorption are weak at RHIC energy.
• α scales with XF, not Xau. (gluon energy loss?, CGC?)
• σabs = 0-3 mb (4.18 +- 0.35 mb at SPS)



Color Glass Condensate
At RHIC, coherent charm production in nuclear

color field at y>0 (Qs > mc) and dominant at y>2.
Described well by Color Glass Condensate.

Approximate XF scaling for SPS and FNAL
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SPS
FNAL
RHIC



Cronin Effect (pT broadening)
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Low x2
~ 0.003

α vs. pT for 3 xAu region
Comparison to lower

energy results.
E866 at √s = 39 GeV.
Trend of pT broadening 

at RHIC is consistent
With lower energy results.

High x2
~ 0.09
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J/ψ Measurement in Au+Au  
and Cu+Cu collisions

Extraction of Hot and Dense 
Medium Effects.

What we have learned on hot 
and dense medium effect?
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RAA vs. Npart in Au+Au/Cu+Cu
Comparison to Cold Matter Effect

Extrapolated from Run3 d+Au results
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|y|<0.35 1.2<|y|<2.4

Factor of 3 suppression at most central (Au+Au/Cu+Cu)
•Beyond the suppression from cold matter effect.

Same pattern at forward rapidity, but different in mid-rapidity.



Models which explain J/ψ
suppression at RHIC.

1st : Dissociation + Recombination
Suppression due to Color Debye screening and 

comover scattering.
Recombination from uncorrelated cc-bar pairs

at hadronization stage.

2nd : Sequence melting (Feed Down Effect)
Melt of only ψ’ and χc. J/ψ still survives at RHIC.

3rd : J/ψ detailed transport in hydro QGP 
Dissociation of J/ψ by gluons in QGP

QGP: Hydrodynamic equation. 
J/ψ : Boltzmann transportation.

High pT J/ψ escape the medium.  
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RAA and NA50 suppression 
Comparison to the  NA50 suppression models

1st : Dissociation + Recombination 21

Co-mover (σabs = 1mb)Direct dissociation +Comover

QGP screening + Comover + FeedDown

J/ψ suppression 
at RHIC is 
over-predicted 
by the suppression 
models that 
described SPS 
data successfully.

SPS RHIC : 
~10x collision energy 
~2-3x gluon energy density



Include Recombination
Dissociation + Recombination 

22

Grandchamp, Rapp, Brown
PRL 92, 212301 (2004)

Thews
Eur.Phys.J C43, 97 (2005)

Models with 
recombination
– single charm quarks 
combining in the 
hadronization stages 
to form J/ψ’s –
match the observed 
RHIC suppression 
much better!

Need to look at 
other observables. 
(<pT

2>, y-shape)

1st : Dissociation + Recombination



<pT
2> and rapidity shape

23

regeneration

dir
ec

t

<pT
2> RAA vs. y

Cronin effect:
<pT

2> = 2.51+0.32*L  from fit to dAu data vs L

Data points are lying 
between direct & Recombination. 
Suggesting some recombination!? 

No significant difference in y-shape, 
while recombination predicts narrower 
rapidity shape.

1st : Dissociation + Recombination

But! Recombination models assume:
charm pT distribution, rapidity distribution, radial flow, (but no longitudinal flow) and 
thermalization of charm. Need to understand charm production at RHIC.



Sequential Melting 
Survival probability vs. energy density

τ0 ~ 1 fm/c

Assuming Successive 
Melting.

Tdiss(χc,ψ’) ~ Tc (dissolved)
Tdiss(J/ψ) ~ 2Tc (un-dissolved)
S(J/ψ) = 0.6 + 0.4*S(ψ’)
S(ψ’) from SPS (S-U, Pb+Pb)

Support the Lattice 
QCD predictions. 

Q: 40% of feed down is still correct at RHIC?

24

H. Satz, CERN Heavy Ion Forum, 10/06/2005

2nd : Sequential Melting (Feed Down Effect)



Transport Model
QGP hydro (2+1D)
Boltzman-type transport
40% feed down
High pT J/ψ escape

Suppression at low pT J/ψ

RAA and <pT
2> match well.
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Au+Au y~1.7 |y| ~ 0

Results for y~2, 
but similar for y~0

Zhu, Zhuang, Xu, PLB607 (2005) 107

+ private communications

At mid-rapidity,
Cronin effect is
negligible (??) since
<pT

2>pp > <pT
2>dAu

3rd : J/ψ detailed transport in QGP



Au+Au Cu+Cu

High pT J/ψ escape the medium!
Results from forward rapidity.

26

Agreement with the transport picture.
This is same tendency as observed at NA50. [L.Ramello talk at QM05]

3rd : J/ψ detailed transport in QGP



Zhu et al.  PLB 607, 107 (2005)

geometry only

coalescence of
thermalized charm
X 0.1
(Rapp)

Azimuthal anisotropy of J/ψ
Key to differentiate recombination and transport 
model.

Recombination :
10% v2 @ 2GeV/c

If charm quark v2 is
same as light quark v2.

Transport model:
0.5% v2 @ 2GeV/c

More suppression of low pT 
J/ψ in the out-of-plane.  
(“Geometry only”)

Need more statistics 
and good RP resolution.

RP detector at Run7
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Current Conclusion of J/ψ
Cold Matter Effect:

Shadowing and Nuclear Absorption are weak.
Need more data to quantify the Cold Matter Effect.

Hot and Dense Medium Effect:
RAA in A+A collisions can be interpreted from:

Balance of Suppression + Recombination
But No strong sign of recombination from <pT

2> and y-shape
Need to understand charm production and its modification in medium.
Other observables such as v2 of J/ψ (10% at 2GeV, if v2 of charm is 
same as v2 of light quarks) and yields of Υ family are helpful.

Feed Down Effect
Melt of ψ’ and χc. J/ψ is still not dissolved. Support the Lattice data.
How fraction of ψ’ and χc go to J/ψ at RHIC energy? RHIC2!

Transport Model
<pT

2> also agrees. Suppression of low pT J/ψ agrees with this picture.
Finite v2 (0.5% at 2GeV/c) is predicted and v2 measurement is helpful. 
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PHENIX Preliminary

J/ψ Polarization 
Sensitive to Production Mechanism
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J/ψ production models predict different polarization.
CEM and CSM:  no polarization
COM:  transverse at high PT
Ioffe and Kharzeev, hep-ph/0306176:   transverse 

(~0.35-0.40)  at low PT if QGP is formed
Khoze, Martin, Ryskin, and Stirling, hep-ph/0410020: 

longitudinal polarization at high PT

Results consistent with no
polarization, large error bars
due to low statistics.

Run3 d+Au



J/ψ in Ultra-Pheriperal Collisions
Photo-production γp J/ψp :   

Sensitive to Gluon distribution at small x. 
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QM05

dσJ/ψ/dy|y=0 =  44 ± 16 (stat) ± 18 (syst) µb

J. Nystrand, NPA 752 (2005) 470c



First Υ measurements
Preliminary results from run5 p+p muon arms
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First χc observation 
From run5 p+p central arms
Further analysis is on going.
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Meeγ-Mee [GeV] Meeγ-Mee [GeV]

Mixed event BG
FG

χc
1χc

2



Summary
PHENIX Measured J/ψ in p+p, d+Au, Au+Au and Cu+Cu.

p+p collisions
Good Base Line for A+A Collisions.
High Stat. Data from Run5 p+p.

First Measurement of Υ and χc . Small error for RAA calculation.

d+Au collisions
Nuclear Effect (Shadowing, Absorption) is weak
More Stat. is needed to quantify CNM effects.

A+A collisions
Suppression above CNM effects in most central collisions.
Suppression + recombination, Feed Down (Lattice), Transport model

can explain observed suppression.
PHENIX is working on finalizing the results. 
v2 measurement will clarify some of the different models.
RHIC2 high luminosity runs will be needed to differentiate these
models with high stat. J/ψ data. (talk by T. Frawley)
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RdAu vs. Ncol
Comparison to the prediction

with :
EKS shadowing 
σabs = 0-3 mb.

Slopes consistent 

with shadowing models 

Especially low x2
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High x2 ~ 0.09

Low x2 ~ 0.003



Typical fixed-target measurement where centrality not measured 
e.g. E772,E866:

Power law representation of nuclear dependence when many 
nuclei are measured (especially useful when comparing different 
experiments that used different light and heavy targets):

Nuclear Modification factor typically used at RHIC:

Where, when looking at non-centrality binned results, the latter 
is equivalent to:

Representing Nuclear 
Dependences

( )
( )Be

W

ABe
AWBeWR

)/(
)/()/(

σ
σ

=

ασσ ApppA=

pp
inv

dAu
coll

dAu
inv

dAu YieldN
YieldR

><
=

( ) pp

dAu
dAuR

σ
σ
1972×

=
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Total Charm Yield 
PHENIX Run2 Au+Au

Binary scaling works well for total charm yield.
dNe/dy is fit to ANcoll

α. 
α = 0.938+/-0.075+/-0.0018
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Charm in the medium
V2 and RAA of Non-photonic electrons

in Au+Au (Run4)
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Shadowing and Saturation
Shadowing (pQCD approach)

2 2 process 
Leading Twist shadowing 

Use nuclear PDF

Parton Saturation (CGC framework)
2 1 process
Including higher twist effect

hh

XX

ffaa

ffbb

d

Au

σ̂
ccaa

bb

h
cD

c
ab

h
c

Au
b

d
a dzDxfxfdzdxdxd σσ ˆ)()()( 2112∫ ∫ ∫=

Leading Twist Gluon shadowingLeading Twist Gluon shadowing

hh

Au (CGC)Au (CGC)

dd

σσdipoledipole

fq
Dq /h

∫ ∫ ⊥⊥ )(),()(~ /21
2 zDrxxfrddz hqdipole

d
q σσ

Valence quark Valence quark distribdistrib..
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Cold Matter effect – Initial state
Gluon shadowing

Depletion of gluon PDF
at small x region

Gluon saturation (CGC)
Breaking Bjorken scaling at 

small x (high energy scattering).  
High density gluons at small x.

gg g process is dominant 
Depletion of small x gluons

Gluon density is  ~ x 6 higher 
in Au than that in the nucleon.
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Eskola et al. NP A696, 729 (2001)



Cold Matter Effect – Nuclear Env.
Nuclear Absorption

Break up interactions
J/ψ or cc pre-resonance 

vs. spectator nucleon 
Multiple scattering of cc pairs

J/ψ is unlikely to produce 
at the production point. 

Relative momentum of the pair
Q2 > Q2 suppression

“Hadronization time”
Cronin effect

Initial state multiple 
Scattering of partons.

pT Broadening 
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800 GeV



(in gold) = Xd - XAu

XAu, XF dependence of α
Shadowing is weak.
Not scaling with X2

but scaling with XF.

Coincidence? 
Shadowing
Gluon energy loss
Nuclear Absorption

Sudakov Suppression?
hep-ph/0501260

Gluon Saturation?
hep-ph/0510358
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σdAu = σpp (2x197)α

E866, PRL 84, (2000) 3256
NA3, ZP C20, (1983) 101
PHENIX, PRL96 (2006) 012304



0 mb

3 mb

Low x2 ~ 0.003
(shadowing region)

RdAu

RdAu vs. Rapidity 
Extraction of shadowing effect

and nuclear absorption
Data favors :

Weak Shadowing 
Weak Absorption 

σabs ~ 0 – 3 mb
σabs = 4.18 +- 0.35 mb at SPS

But with limited statistics 
difficult to disentangle 
nuclear effects !
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