Theoretical Perspectives on Drell-Yan Production Measurements

Jianwei Qiu Brookhaven National Laboratory

RBRC Workshop on "Opportunities for Drell-Yan Physics at RHIC" May 11-13, 2011 Brookhaven National Laboratory, Upton, NY

Outline

Almost all talks so far addressed "theoretical perspectives on Drell-Yan production measurements"

Drell-Yan production measurements:

Drell-Yan type observables

□ Theoretical perspectives:

Opportunities and challenges

Drell-Yan offers much more than the sign change

Generation Summary and outlook

Drell-Yan production measurements

Process:

$$A(P_1) + B(P_2) \longrightarrow V[\rightarrow \ell^+ \ell^-(q)] + X$$

Doservables ($V(q) \rightarrow \gamma^*(q)$ **):**

 $\frac{d\sigma}{d^4qd\Omega} = \frac{\alpha_{\rm em}^2}{2(2\pi)^4 S^2 Q^2} [W_T(1+\cos^2\theta) + W_L(1-\cos^2\theta) + W_\Delta(\sin(2\theta)\cos\phi) + W_{\Delta\Delta}(\sin^2\theta\cos(2\phi))].$

 \diamond Single-scale cross sections ($Q \gg 1/\text{fm}$):

$$q^2 \equiv Q^2$$
 $\qquad \frac{d\sigma}{dQ^2}, \quad \frac{d\sigma}{dQ^2dy}$

 \diamond Two-scale cross sections ($Q \gg q_T, Q \sim q_T, Q \ll q_T$):

$$\frac{d\sigma}{dQ^2 dq_T^2}, \quad \frac{d\sigma}{dQ^2 dq_T^2 dy}, \quad \frac{d\sigma}{dQ^2 dq_T^2 dy d\Omega}$$

 \diamond Asymmetries \propto Difference of cross sections

Drell-Yan mechanism in parton model

Drell-Yan lepton-pair production:

$$\frac{d\sigma_{A+B\to\ell\bar{\ell}(Q^2)+X}}{dQ^2} = \sigma_0 \sum_q e_q^2 \int dx \,\phi_{q/A}(x) \int dx' \,\phi_{\bar{q}/B}(x') \,\delta(Q^2 - xx's_{AB}) + q \leftrightarrow \bar{q}$$

$$= \frac{\sigma_0}{s_{AB}} \sum_q e_q^2 \,\mathcal{F}_{q\bar{q}}(\tau = Q^2/s_{AB}),$$

$$\frac{\sigma_0 = \sigma_{q\bar{q}\to\ell\bar{\ell}(Q^2)}^{\text{incl}}}{\mathcal{F}_{q\bar{q}}(\tau) = \int dx \,\phi_{q/A}(x) \int dx' \,\phi_{\bar{q}/B}(x') \,\delta(\tau - xx') + q \leftrightarrow \bar{q}$$
Effective flux: $\mathcal{F}_{q\bar{q}}(\tau) = \int dx \,\phi_{q/A}(x) \int dx' \,\phi_{\bar{q}/B}(x') \,\delta(\tau - xx') + q \leftrightarrow \bar{q}$

Predictions:

- **\diamond No free parameter for production rate!**
- Ormalized Drell-Yan angular distribution

$$\frac{dN}{d\Omega} = \left(\frac{d\sigma}{d^4q}\right)^{-1} \frac{d\sigma}{d^4q d\Omega} = \frac{3}{4\pi} \left(\frac{1}{\lambda+3}\right) \left[1 + \lambda \cos^2\theta + \mu \sin(2\theta) \cos\phi + \frac{\nu}{2} \sin^2\theta \cos(2\phi)\right]$$

 \Rightarrow Transversely polarized virtual photon: 1 + cos²θ distribution \Rightarrow Lam-Tung relation: $1 - \lambda - 2\nu = 0$

Drell-Yan mechanism in QCD

Leading order in QCD:

$$I = \frac{1}{2} \left[\gamma^{+} \gamma^{-} + \gamma^{-} \gamma^{+} \right]$$

$$\Leftarrow \text{ all } \gamma \text{ structure: } \gamma^{\alpha}, \gamma^{\alpha} \gamma^{5}, \sigma^{\alpha\beta} (\text{or } \gamma^{5} \sigma^{\alpha\beta}), I, \gamma^{5}$$

$$\Leftarrow \text{ all } \gamma \text{ structure: } \gamma^{\alpha}, \gamma^{\alpha} \gamma^{5}, \sigma^{\alpha\beta} (\text{or } \gamma^{5} \sigma^{\alpha\beta}), I, \gamma^{5}$$

Leading power distributions: $\langle P, s | \overline{\psi}_q \rangle$

$$\langle P, s | \psi_q(0) \mathcal{O} \psi_q(y^-) | P, s \rangle$$

$$\mathcal{O} = \frac{\gamma \cdot n}{P \cdot n}, \ \frac{\gamma \cdot n \gamma^5}{P \cdot n}, \ \frac{\gamma \cdot n \gamma_{\perp}^{\sigma}}{P \cdot n} \quad \Leftrightarrow \quad q(x), \ \Delta q(x), \ \delta q(x)(\operatorname{or} h_1(x))$$

□ Transversity distribution:

$$h_1(x) \propto \langle P, S_{\perp} | \overline{\psi}(0) \, \frac{\gamma \cdot n \, \gamma_{\perp}^{\sigma}}{P \cdot n} \, \psi(yn) | P, S_{\perp} \rangle$$

□ Asymmetries – collinear factorization:

$$A_{LL} \propto \sum_{q} e_q^2 \ \Delta q(x) \Delta \bar{q}(x') \qquad A_{TT} \propto \sum_{q} e_q^2 \ h_{1q}(x) h_{1\bar{q}}(x') \qquad A_L \propto \sum_{q} (c_v * c_a) \ \Delta q(x) \ \bar{q}(x')$$
$$A_N \propto \sum_{q} e_q^2 \ T_q(x,x) \ \bar{q}(x') \qquad A_{LT} \propto \sum_{q} e_q^2 \ \Delta q(x) \ \tilde{T}_{\bar{q}}(x')$$

From parton model to QCD

□ Parton model – big K-factor:

$$K \equiv \frac{\left(d\sigma/dQ^2\right)_{\rm PM}}{\left(d\sigma/dQ^2\right)_{\rm exp}} \gtrsim 2$$

Parton model = leading order QCD without DGLAP evolution
 Leading order QCD calculation has the same size K-factor

QCD calculation at NLO and higher:

$$K \equiv \frac{\left(d\sigma/dQ^2\right)_{\rm NLO}}{\left(d\sigma/dQ^2\right)_{\rm exp}} = 1$$

 Normalization uncertainty in QCD global fit is limited by systematic error of individual experiment

 High order corrections are sensitive to if the virtual photon's invariant mass is space-like or time-like

$$\log(q_{\rm DIS}^2) \rightarrow \log(-q_{\rm DIS}^2) + \log(-1)$$

Factorized Drell-Yan cross section

TMD factorization ($q_{\perp} \ll Q$):

The soft factor, $\ {\cal S}$, is universal, could be absorbed into the definition of TMD parton distribution

Collinear factorization ($q_{\perp} \sim Q$, $q_{\perp} \gg Q$):

$$\frac{d\sigma_{AB}}{d^4q} = \int dx_a f_{a/A}(x_a,\mu) \int dx_b f_{b/B}(x_b,\mu) \frac{d\hat{\sigma}_{ab}}{d^4q}(x_a,x_b,\alpha_s(\mu),\mu)$$

□ Spin dependence:

The factorization arguments are independent of the spin states of the colliding hadrons

 \implies same formula with different distributions for $\gamma^*, W/Z, H^0...$

TMD vs collinear factorization

□ TMD factorization and collinear factorization cover different regions of kinematics:

Collinear: $Q_1 \dots Q_n \gg \Lambda_{QCD}$ TMD: $Q_1 \gg Q_2 \sim \Lambda_{QCD}$

One complements the other, but, cannot replace the other!

Predictive power of both formalisms relies on the validity of their own factorization

Consistency check – overlap region – perturbative region

"Formal" operator relation between TMD distributions and collinear factorized distributions:

spin-averaged: $\int d^2k_{\perp} \Phi_f^{\text{SIDIS}}(x,k_{\perp}) + \text{UVCT}(\mu_F^2) = \phi_f(x,\mu_F^2)$

Transverse-spin: $\frac{1}{M_P} \int d^2 k_\perp \vec{k}_\perp^2 q_T(x,k_\perp) + \text{UVCT}(\mu_F^2) = T_F(x,x,\mu_F^2)$

But, TMD factorization is only valid for low $k_T - TMD PDFs$ at low k_T

The sign change of Sivers function

TMD quark distribution:

See talks by Collins, Kang, ...

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S}|\overline{\psi}(0^{-},\mathbf{0}_{\perp}) \boxed{\text{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-},\mathbf{y}_{\perp})|p,\vec{S}\rangle$$

- SIDIS: $\Phi_n^{\dagger}(\{+\infty, 0\}, \mathbf{0}_{\perp}) \Phi_{\mathbf{n}_{\perp}}^{\dagger}(+\infty, \{\mathbf{y}_{\perp}, \mathbf{0}_{\perp}\}) \Phi_n(\{+\infty, y^-\}, \mathbf{y}_{\perp})$
- DY: $\Phi_n^{\dagger}(\{-\infty, 0\}, \mathbf{0}_{\perp})\Phi_{\mathbf{n}_{\perp}}^{\dagger}(-\infty, \{\mathbf{y}_{\perp}, \mathbf{0}_{\perp}\})\Phi_n(\{-\infty, y^-\}, \mathbf{y}_{\perp})$

For a fixed spin state:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

□ Parity + Time-reversal invariance:

$$f_{q/h^{\uparrow}}^{\text{Sivers}}(x,k_{\perp})^{\text{SIDIS}} = -f_{q/h^{\uparrow}}^{\text{Sivers}}(x,k_{\perp})^{\text{DY}}$$

It is a critical test of TMD factorization approach

Theoretical challenge: Q-dependence of Sivers function?

The sign "mismatch"

□ Asymmetry could have a node:

Sign change of $\Delta g(x)$:

$$A(s) \propto \sigma(s) - \sigma(-s)$$

\Box A_N of Drell-Yan p_T distribution:

Important measurement for understanding A_N of hadronic pion

See talks by Kang

Unpolarized Drell-Yan cross section

□ The denominator of the Asymmetry:

□ Angular integrated Drell-Yan is under control:

CSS resummation formalism – small role of nonperturbative physics

Unpolarized Drell-Yan cross section

□ The denominator of the Asymmetry:

 $\frac{d\sigma}{d^4q} \qquad \qquad \frac{d\sigma}{d^4qd\Omega}$

□ Angular integrated Drell-Yan is under control:

Qiu and Zhang, 2001

CSS resummation formalism – importance of power corrections

Unpolarized Drell-Yan cross section

□ The denominator of the Asymmetry:

□ Angular integrated Drell-Yan is under control:

But, Drell-Yan lepton angular distribution needs work!

Lam-Tung relation

□ Normalized Drell-Yan lepton angular distribution:

$$\frac{dN}{d\Omega} = \left(\frac{d\sigma}{d^4q}\right)^{-1} \frac{d\sigma}{d^4q d\Omega} = \frac{3}{4\pi} \left(\frac{1}{\lambda+3}\right) \left[1 + \lambda \cos^2\theta + \mu \sin(2\theta)\cos\phi + \frac{\nu}{2}\sin^2\theta\cos(2\phi)\right]$$

Lam-Tung relation:

$$1 - \lambda - 2\nu = 0$$

Collinear factorization:

$$\lambda = \frac{W_T - W_L}{W_T + W_L} \approx \frac{W_T^{\text{Resum}} - W_L^{\text{Resum}}}{W_T^{\text{Resum}} + W_L^{\text{Resum}}} = \frac{1 - \frac{1}{2}Q_{\perp}^2/Q^2}{1 + \frac{3}{2}Q_{\perp}^2/Q^2}$$
$$\nu = \frac{2W_{\Delta\Delta}}{W_T + W_L} \approx \frac{2W_{\Delta\Delta}^{\text{Resum}}}{W_T^{\text{Resum}} + W_L^{\text{Resum}}} = \frac{Q_{\perp}^2/Q^2}{1 + \frac{3}{2}Q_{\perp}^2/Q^2}$$

TMD factorization:

- Boer - Mulder function - $cos(2\Phi)$:

$$h_1^{\perp \mathrm{DY}}(x) = -h_1^{\perp \mathrm{SIDIS}}(x)$$

Theory challenge: Q-dependence of BM function, $cos(\overline{\Phi})$, ...

Berger, Qiu, Rodriguez, 2007

High p_T and low mass Drell-Yan

□ Clean probe of gluon without final-state interaction

Compton subprocess dominates when $q_T > Q/2$

Complementary to prompt photon

Berger, Qiu, Zhang, PRD 2002

□ Idea: low Q^2 – increases the rate, and high p_T – reliable pQCD calculation

IF $p_T >> Q_s$, Collinear factorization is as good as that of prompt photon

Kang, Qiu, Vogelsang, PRD 2009

Very low mass Drell-Yan ($p_T > Q \sim 1/fm$)

□ Invariant cross section:

Kang, Qiu, Vogelsang, PRD 2009

$$E\frac{d\sigma_{AB\to\ell^+\ell^-(Q)X}}{d^3Q} \equiv \int_{Q^2_{\min}}^{Q^2_{\max}} dQ^2 \, \frac{1}{\pi} \, \frac{d\sigma_{AB\to\ell^+\ell^-(Q)X}}{dQ^2 \, dQ^2_T \, dy}$$

Role of non-perturbative fragmentation function:

♦ Input FF: $D(z, \mu_0) = D^{\text{QED}}(z) + \kappa D^{\text{NP}}(z)$ ♦ QED alone (dotted): $\kappa = 0 \text{ at } \mu_0 = 1 \text{ GeV}$ ♦ QED + hadronic input (solid): $\kappa = 1 \text{ at } \mu_0 = 1 \text{ GeV}$

Hadronic component of fragmentation is very important at low Q_T

Excellent probe of gluon distribution

□ Nuclear modification factor:

Kang, Qiu, Vogelsang, PRD 2009

$$R_{\rm dAu} \equiv \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N^{\rm dAu}/dQ_T dy}{d^2 N^{pp}/dQ_T dy} \stackrel{\rm min.bias}{=} \frac{\frac{1}{2A} d^2 \sigma^{\rm dAu}/dQ_T dy}{d^2 \sigma^{pp}/dQ_T dy}$$

□ RHIC kinematics – if dominated by single scattering:

– The band is given by κ =1 (top lines) and κ =0 (bottom lines)

- Ratio follows the feature of gluon distribution if turns off isospin
- No suppression if removing isospin effect

Saturation and CGC physics

\Box Forward rapidity (y >> 0):

If $Q_T \sim Q_s$, collinear factorization fails

Nuclear shadowing cannot produce such suppression! Theory challenge: Role of p_T ?

Another sign change

Power correction to DIS – single scale:

□ Power correction to inclusive DY – single scale:

Another sign change

□ DIS with a space-like hard scale:

DY with a time-like hard scale:

LO

Resum all powers

Inclusive low mass Drell-Yan

D Power correction to inclusive total rate: $d\sigma^{AA}/dQ^2$

Power correction from cold nuclear matter enhances the dilepton production - consistent with NA60 data

Theory challenge: A-dependence of DY's p_T and y distributions

See talks by Mueller, Yuan, Jalilian-Marian, Reimer, Peng, ...

Drell-Yan with parity violation

High order, W's p_T -distribution at low p_T

Challenge in predicting A_L of lepton

□ RHIC experiments measure decay lepton not the W's:

□ Fixed order pQCD calculation:

Leptons not from W decay – background – hard for theorists All order resummation is needed:

CSS formalism – implemented in RHICBOS – only diagonal contribution

Resummation for the lepton angular distribution needed!

Scale dependence of the polarized sea $\Delta \bar{q}(\mu = M_W) \Longrightarrow \Delta \bar{q}(\mu = Q \sim \text{GeV's})_{\text{SIDIS}}$

Sea quark asymmetry from Drell-Yan

□ Flavor asymmetry of the sea:

See talks by Reimer, Peng, ...

Theory challenge: Why there is a node? Role of pion cloud? ...

TMD gluon distribution

□ Gluon Sivers function:

Need TMD factorizable observables!

□ RHIC: momentum imbalance of two isolated photons:

 $A(P_1) + B(P_2) \longrightarrow \gamma(p_1) + \gamma(p_2) + X$

See talk by Schlegel

Given Future EIC:

 $\ell(k) + B(P) \longrightarrow D(p1) + \overline{D}(p_2) + X$

Diehl and Xiao

 $\ell(k) + B(P) \longrightarrow J/\psi(P_T) + X$

Summary and outlook

□ Drell-Yan process is one of the oldest hard process proposed to test QCD – it still a very good one!

□ The proof of QCD factorization for Drell-Yan is solid (LP + NLP for collinear, LP for TMD)

□ The test of the sign change of the Sivers function is a critical test of TMD factorization!

Drell-Yan could provide much more than the sign change of Sivers function

Thank you!

Backup transparencies