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Apply to spin averaged and dependent.
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I. Drell-Yan Production in the Parton Model

• The original ‘collinear factorization’

• In the parton model (1970).
Drell and Yan: look for the annihilation of quark pairs
into virtual photons of mass Q . . . any electroweak boson
in NN scattering.

dσNN→µµ̄+X(Q, p1, p2)

dQ2d . . .
∼

∫
dξ1dξ2

∑
a=qq̄

dσ
EW,Born
aā→µµ̄ (Q, ξ1p1, ξ2p2)

dQ2d . . .
×(probability to find parton a(ξ1) in N)

×(probability to find parton ā(ξ2) in N)

The probabilities are φq/N(ξi)’s from DIS
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σEW,Born is all from this diagram (ξ’s set to unity):

How it works (with colored quarks) . . .

• The Born cross section

σEW,Born is all from this diagram (ξ’s set to unity):

q(p1)

q(p2)

l
-
(k1)

l
+
(k2)

With this matrix element

M = eq
e2

Q2u(k1)γµv(k2)v(p2)γ
µu(p1)

• First square and sum/average M . Then evaluate phase space.

With this matrix element:

M = eq
e2

Q2u(k1)γµv(k2)v(p2)γµu(p1)

• First square and sum/average M . Then evaluate phase space.
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• Total cross section at pair mass Q

σEW,Born
qq̄→µµ̄ (x1p1, x2p2) =

1

2ŝ

∫ dΩ

32π2

e2
qe

4

3
(1 + cos2 θ)

=
4πα2

9Q2
∑
q
e2
q

• With Q the pair mass and 3 for color average.

• All this is spin-averaged too, but doesn’t need to be.

• Template for all hard hadron-hadron scattering

• Toward the quantum field theory of all this . . .

.
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2. The Physical Basis of Factorization

• ‘Collinear factorization’ for hadron-hadron scattering for a
hard, inclusive process with momentum transfer M to pro-
duce final state F +X:

dσH1H2
(p1, p2,M) =
∑
a,b

∫ 1
0 dξa dξbdσ̂ab→F+X (ξap1, ξbp2,M, µ)

×φa/H1
(ξa, µ)φb/H2

(ξb, µ)

• Factorization proofs: justifying the “universality” of the par-
ton distributions.
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• The operator definition:

φf/H(x, µ, ε) =

1

4NC

∫ dλ
2π

e−iλxp
+
〈H(p)|q̄f(λu)γ− qf(0)|H(p)〉

• Where the quarks are linked by ordered exponentials,

Φ
(f)
β (λ, 0) = P exp

−ig ∫ λ
0 dη β·A

(f)(ηβ)
 .
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• The physical basis: classical fields

x,y,z,t

q
β 1

x , y , z , t

x3cβt -−∆= ∆ ≡ x′3 − βct′

• Why a classical picture isn’t far-fetched . . .

The correspondence principle is the key to IR divergences.

An accelerated charge must produce classical radiation,

and an infinite numbers of soft gluons are required
to make a classical field.

-25



Transformation of a scalar field:

V (x) =
q

(x2
T + x2

3)1/2
= V ′(x′) =

q

(x2
T + γ2∆2)1/2

From the Lorentz transformation:
x3 = γ(βct′ − x′3) ≡ −γ∆.

Closest approach is at ∆ = 0, i.e. t′ = 1
βcx
′
3 .

The scalar field transforms “like a ruler”: At any fixed
∆ 6= 0, the field decreases like 1/γ =

√
1− β2.

Why? Because when the source sees a distance x3,
the observer sees a much larger distance.
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x,y,z,t

q
β 1

x , y , z , t

x3cβt -−∆=

field x frame x′ frame

scalar q
|~x|

q
(x2T+γ2∆2)1/2

∼ 1
γ

gauge (0) A0(x) = q
|~x| A′0(x′) = −qγ

(x2T+γ2∆2)1/2
∼ γ0

field strength E3(x) = q
|~x|2 E′3(x

′) = −qγ∆
(x2T+γ2∆2)3/2

∼ 1
γ2

• The “gluon field” A′µ is enhanced, yet is a total derivative:

A′µ = q
∂

∂x′µ
ln

(
∆(t′, x′3)

)
+O(1− β) ∼ A′−

• The “large” part of A′µ can be removed by a gauge transfor-
mation!
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• The electric, ~E field of the incident particle does not
overlap the “target” until the moment of the scattering.

• “Advanced” effects are corrections to the total derivative:

1− β ∼
1

2

√1− β2
2 ∼ m2

2E2

• Power-suppressed! These are corrections to factorization.

• At the same time, a gauge transformation also induces
a phase on charged fields:

q(x)⇒ q(x) ei ln(∆)

• Origin of the gauge links in factorized PDFs.
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• These phases cancel if the fields are well-localized ⇔ σ in-
clusive.

• Initial-state interactions decouple from hard scattering

• Summarized by multiplicative factors: the parton distribu-
tions.

⇒ Cross section for inclusive hard scattering is IR safe,
with power-suppressed corrections.

-21



• What about final state interactions? Much of the same rea-
soning holds:

x < βc t3

• Subtle but important difference: ∆ changes sign in the final
state.

• Then the gauge function in ln(∆) gets an imaginary part.

• q(x)⇒ q(x) ei ln(∆) not the same phase.

• Mismatch between initial- and final-state interactions: DIS/DY
sign differences (Collins).

• Can be important for observables involving correlations in the
final state. (Collins & Qiu)
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3. Collinear Factorization at Fixed QT

The transverse momentum distribution at order αs.

Extend factorization to gluon radiation process:

q(p1) + q̄(p2)→ γ∗(Q) + g(k)

Treat this 2 → 2 process at lowest order (αs) “LO”
in factorized cross section, so that k = −Q.

The result is well-defined for QT 6= 0.

-19



• The diagrams at order αs

Gluon emission contributes at QT 6= 0

Virtual corrections contribute only at QT = 0
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d2σ
(1)
qq̄→γ∗g(z,Q

2,QT )

dQ2 d2QT
= σ0

αsCF

π2

1−
4Q2

T

(1− z)2ŝ


−1/2

×


1

Q2
T

1 + z2

(1− z)
−

2z

(1− z)Q2



Fine as long as QT 6= 0, z = Q2/S 6= 1.

QT integral→ ln(1− z)/(1− z), z integral→ ln(QT )/QT .

Both off these limits can be dealt with by reorganization,
“resummation” of higher order corrections
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4. TMD Factorization for Drell-Yan Production

•QT factorized cross sections: the motivation

• LowQT Drell-Yan & Higgs at leading log (LL) (αsn ln2n−1QT )

dσ(Q)

dQT
∼

d

dQT
exp

−
αs

π
CF ln2


Q

QT




(CF = 4/3)

66 < Q < 116 GeV

CDF

Exclusive Limit
Resum

Resum+power
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• General features:

Maximum then decrease near “exclusive” limit
(parton model kinematics) replaces divergence at QT = 0

Soft but perturbative radiation broadens distribution

Typically nonperturbative correction necessary for
full quantitative description, esp. for Q ∼ few GeV.

Recover fixed order predictions σ(1) away from QT � Q.
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Getting to QT � Q: Transverse momentum resummation

• (Logs of QT )/QT to all orders

How? Variant factorization and separation of variables

q and q̄ “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and q̄ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

-14



Summarized by: QT -factorization (Collins-Soper):

dσNN→QX
dQd2QT

=
∫
dξ1dξ2 d

2k1Td
2k2Td

2ksT δ (QT − k1T − k2T − ksT )

× H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T )

×Uaā(ksT , n)

The P′s: new Transverse momentum-dependent TMD Dis-
tribution:
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• An operator definition

Pf/H(x, k, p · n, ε) =
1

4NC

∫ dλ
2π

d2b

(2π)2
e−iλxp·u+ib·k

× 〈H(p)|q̄f(0+, λ, b)γ · u qf(0)|H(p)〉

• In this case, the gauge links distinguish initial and final states
as above: see new form by John Collins
(As in Aybat and Rogers, 2011).
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Also need U(b) = ∫ deσ(eik)(ξ,Q, k, ε): “soft function” for
wide-angle radiation

Uaā(ksT , n) =
∫ d2b

(2π)2
eib·ksT

×
1

d(c)
Tr 〈0| T̄

W(cd̄)(0)†] T
W(cd̄)(b


 |0〉 .

W(cd̄)(X) = Φ
(d̄)
β′ (0,−∞;X) Φ

(c)
β (0,−∞;X) ,

• Can be absorbed into the definition of the TMDs for one
process: DY for example (Collins).

-11



• Symbolically:

dσNN→QX
dQd2QT

= H × Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T )

⊗ξi,kiT Uaā(ksT , n)

We can solve for the kT dependence of the P’s.

New factorization variables: nµ apportions gluons k:

pi · k < n · k ⇒ k ∈ Pi
pa · k, pā · k > n · k ⇒ k ∈ U

Convolution in ki,T s ⇒ Fourier ei
~QT ·~b
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• The factorized cross section in “impact parameter space”:

dσNN→QX(Q, b)

dQ

=
∫
dξ1dξ2 H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, b)Pā/N(ξ2, p2 · n, b) Uaā(b, n)

Now we can solve for b dependence just by separating vari-
ables!

the LHS independent of µren, n ⇒ two equations

µren
dσ

dµren
= 0 nα

dσ

dnα
= 0
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• Solve and transform back to QT : all the (Logs of QT )/QT :

dσNNres

dQ2 d2 ~QT
=

∑
a
Haā(αs(Q

2))
∫ d2b

(2π)2
ei
~QT ·~b exp

EPT
aā (b,Q, µ)



× ∑
a=qq̄

∫
ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

“Sudakov” exponent suppresses large b ↔ small QT :

EPT
aā = − ∫Q2

1/b2
dk2
T

k2
T

2Aq(αs(kT )) ln
Q2

k2
T

 + 2Bq(αs(kT ))


With B = 2(K +G)µ=p·n, and lower limit: 1/b (NLL)
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• Comments:

The functions Ai(αs) and Bi(αs) are anomalous
dimensions.

And can be calculated by comparison to low orders.

In particular, Ai(αs) is the numerator of
the 1/(1− x) term in splitting function Pii(x)

because it’s the infrared divergent (x→ 1) coefficient of
the collinear b→∞ singularity.

•Aq(αs) = αs
π Cq

(
1 + αs

πK + . . .
)
,

K = CA

67
18 −

π2

6

− 5nF
9
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• Evaluating a resummed cross sections: re-enter NPQCD.

We start with:

EPT = −
∫Q2

1/b2

dk2
T

k2
T

2Aq(αs(kT )) ln


Q2

k2
T

 + Bq(αs(kT ))



With running coupling:

αs(kT ) =
αs(Q)

1 + αs(Q)
4π β0 ln

k
2
T
Q2


=

4π

β0 ln

 k2
T

Λ2
QCD



Singularity in integral at
b2 = Q2 exp[−4π/β0αs(Q)] ∼ 1

Λ2.
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• Problem: how to do the inverse transform with the
running coupling when kmin

T ∼ 1/b gets small?

• A whole bunch of approaches:

1) Work in QT -space directly to some approximation
The originals: Dokshitzer, Diakanov & Troyan
Revived by Ellis & Veseli Kulesza & Stirling
who re-derived it from b-space.

2) Insert a “soft landing” on the kT integral by replacing

1/b→
√√√√1/b2 + 1/b2

∗
for some fixed b∗. (CS, CSS “b∗” prescription, ResBos)
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3) Extrapolation of EPT into NP region (Qiu, Zhang).

4) Minimal: avoid the singularity at 1/b = ΛQCD
by monkeying with the b-space contour integral.
(This technique introduced in threshold resummation;
then adapted by Laenen, GS and Vogelsang,
and Bozzi, Catani, de Florian and Grazzini.)

• 5) Effective theory (SCET) treatments (Stewart, Tackmann,
Waalewijn et al, Becher and Neubert, Petriello and Mantry).
Multi-step evolution in momentum rather than moment/impact
parameter spaces.

Any of these “define” PT. All will fit the data
qualitatively, and with a little work quantitatively.

But at low QT require new parameters for quantitative fit.
This is not all bad . . . let’s see why.
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• Window to nonperturbative distributions:

Esoft =
1

2π

∫ µ2
I

0
d2kT

k2
T

Aq(αs(kT )) ln


Q2

k2
T


eib·kT − 1



∼ −
∫ µ2
I

0
dk2
T

k2
T

(b · kT )2Aq(αs(kT )) ln


Q2

k2
T

 + · · ·

∼ − b2 ∫
dk2
T Aq(αs(kT )) ln


Q2

k2
T



θ(kT − 1/b)⇒ (eib·kT − 1); in fact, correct to all orders,

Note the expansion is for b “ small enough” only.
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What is − b2 ∫ dk2
T Aq(αs(kT )) ln

Q2

k2
T

 ?

• Related to dU(b)/db2 and

• Suggests a nonperturbative correction of the form
(exhibiting the µI is unconventional)

ENP = − b2µ2
I

g1 ln


Q

µI

 + g2



Since this is an exponent, whatever the definition
of the pertrubative resummed cross section, it is
smeared with a Gaussian whose width in b (kT ) space
decreases (increases) with lnQ.
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In summary

dσ(QT )

dQ2 d2 ~QT
=

∑
a
Haā(αs(Q

2))
∫ d2b

(2π)2
ei
~QT ·~b eE

PT
aā (b,Q,µ)

× e
− µ2

Ib
2(g1 ln

 Q
µI

+g2)

× ∑
a=qq̄

∫
ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2

× fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

= π
∫
d2kT

e−k
2
T/4[µ2

I(g2 ln(Q/kT )+g2)]

µ2
I(g2 ln(Q/kT ) + g2)

dσNN(QT − kT)

dQ2 d2 ~QT

Which gives curves like the one we saw before.
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6. A Few concluding Comments

• Factorization in quantum field theory is closely related to clas-
sical considerations.

• Differences between initial- and final-state gauge links are
consistent with this factorization.

• There is a well-developed theory of factorization for Drell-Yan,
including transverse momentum dependence.

• The ‘QCD-inclusive’ nature of Drell-Yan production maintains
the underlying factorization.

• Nonperturbative effects play an essential role at low QT and
should be thought of as an integral part of the formalism.

• The stage is set for a new phenomenology to explore the
transverse-momentum dependent and spin-sensitive parton
distributions.
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