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Some general considerations to set the stage.
Apply to spin averaged and dependent.

1. Drell-Yan production in the Parton Model

2. The Physical Basis of Factorization

3. Collinear Factorization at Fixed Qr

4. TMD Factorization for Drell Yan Production

5. A Few Concluding Comments
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. Drell-Yan Production in the Parton Model

e The original ‘collinear factorization’

e In the parton model (1970).
Drell and Yan: look for the annihilation of quark pairs
into virtual photons of mass () ... any electroweak boson
in NN scattering.

dO'NN—HiL_H-X(Qa P1, P2)

dQ2d. .. ~
EW,B
doas—spun  (Q,&1p1, E2p2)
[ d§1d€2 % _ 5
a=qq dQ-d...

X (probability to find parton a(&1) in IV)
X (probability to find parton a(&2) in INV)

The probabilities are qbq/N(éi)’s from DIS
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oEW.Born iq all from this diagram (&’s set to unity):

q(p1) I'(ky)

q(p2) 1+(k2)

With this matrix element:
2
M = quzu(kl)’)’u’v(kZ)U(pZ)'YHU(pl)

e First square and sum/average M. Then evaluate phase space.
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e Total cross section at pair mass ()

1 dQ e2e?
EW, Born _ q 2
Tqi—ipp (F1PLT2P2) = ) o 5 (14 cos™0)
A a? 9
— > e
9Q2 qg 4

e With (Q the pair mass and 3 for color average.

e All this is spin-averaged too, but doesn’t need to be.
e Template for all hard hadron-hadron scattering

e Toward the quantum field theory of all this ...
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2. The Physical Basis of Factorization

e ‘Collinear factorization’ for hadron-hadron scattering for a
hard, inclusive process with momentum transfer M to pro-
duce final state F' 4+ X:

dJH1H2(p19 P2, M) —
2 /()1 déa dgbd&ab%F—l—X (£ap1, €bp29 M, :U’)

a,b
X®q/H,(Eas ) O/ H,(Ebs 1)

e Factorization proofs: justifying the “universality” of the par-
ton distributions.

=27



e The operator definition:

¢f/H(w7 s E) —

e e T H By a7 (0)|H)

e Where the quarks are linked by ordered exponentials,

34 (X, 0) = Pexp|—ig  dn B-AD ()] .
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e The physical basis: classical fields

@:DD}%

-A= ¢cfit’-x, wé . ,Bct'

e Why a classical picture isn’t far-fetched ...
The correspondence principle is the key to IR divergences.
An accelerated charge must produce classical radiation,

and an infinite numbers of soft gluons are required
to make a classical field.
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Transformation of a scalar field:

B q
- (aF +2A2)1/2

q

. / /
@h+ap2 = )

Viz) =

From the Lorentz transformation:
3 = v(Bct’ — x5) = —vA.

Closest approach is at A =0, i.e. t/ = Blcazg .

The scalar field transforms “like a ruler’: At any fixed
A # 0, the field decreases like 1/~v = |1 — 32.

Why? Because when the source sees a distance =3,
the observer sees a much larger distance.
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g

field
scalar
gauge (0)

field strength

x frame x’ frame
q q 1
E (22442421727 5
0 q 10( 0\ — —qv
A (w) [ A (CE) T (#2412A2)1/2
Es;(x) = 5 El(x)) = —qYA
3 |5§ 3 (sc +’72A2)3/2

0

~

~ L
42

e The “gluon field” A’" is enhanced, yet is a total derivative:

(At z3)) +O(1 - 8) ~ AT

e The “large” part of A’ can be removed by a gauge transfor-

mation!
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e The electric, E field of the incident particle does not
overlap the “target” until the moment of the scattering.

e “Advanced” effects are corrections to the total derivative:

2
1-5 ~ ; 11— p2f ~

™m
2E2

e Power-suppressed! These are corrections to factorization.

e At the same time, a gauge transformation also induces
a phase on charged fields:

q(x) = q(x) e

¢ Origin of the gauge links in factorized PDFs.

tIn(A)
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e These phases cancel if the fields are well-localized < o in-
clusive.

e Initial-state interactions decouple from hard scattering

e Summarized by multiplicative factors: the parton distribu-
tions.

— Cross section for inclusive hard scattering is IR safe,
with power-suppressed corrections.
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e What about final state interactions? Much of the same rea-
soning holds:

@< @Q@ N

X; < Bct

e Subtle but important difference: A changes sign in the final
state.

e Then the gauge function in In(A) gets an imaginary part.
e g(z) = q(x) '™(A) not the same phase.

e Mismatch between initial- and final-state interactions: DIS/DY
sign differences (Collins).

e Can be important for observables involving correlations in the
final state. (Collins & Qiu)
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3. Collinear Factorization at Fixed Q7

The transverse momentum distribution at order os.

Extend factorization to gluon radiation process:

q(p1) + q(p2) — 7" (Q) + g(k)

Treat this 2 — 2 process at lowest order (as) “LO”
in factorized cross section, so that k = —Q.

The result is well-defined for Q7 # 0.
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e The diagrams at order oy

Gluon emission contributes at Q7 # 0

;WZ 0%

Virtual corrections contribute only at Q7 = 0

-
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—1/2

d?o (11)_>7 ¢(z,Q%,Qr) osCrp ; 4Q%

(1 — 2)23
1 14 22 22

Q% (1-2) (1-12)Q2

2

= 0y
dQ? d?Qr

Fine as long as Qr # 0, z = Q%/S # 1.

Qr integral — In(1 —2)/(1 — z), z integral — In(Q1)/QT.

Both off these limits can be dealt with by reorganization,
“resummation” of higher order corrections
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4. TMD Factorization for Drell-Yan Production

e Q1 factorized cross sections: the motivation
e Low Q7 Drell-Yan & Higgs at leading log (LL) (as” In?"~1 Q)

do(Q) d Qs 2 ( Q ”
~Y exp —iCF In“|—
dQr dQr ™ T
(Cr =4/3)
1 40/aQs (pb/CeV) T coe

Hesum : 3 66 < Q0 < 116 GeVv
I | —_—

\ &%, Exclusive Limit
il ;.‘

K . :‘ — I _ )
10 20 30 40 50
Qr (GeV)
\ NLO
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e General features:

Maximum then decrease near “exclusive” limit
(parton model kinematics) replaces divergence at Q1 = 0

Soft but perturbative radiation broadens distribution

Typically nonperturbative correction necessary for
full quantitative description, esp. for (Q ~ few GeV.

Recover fixed order predictions o (1) away from Q1 < Q.

-15



Getting to Q7 < Q): Transverse momentum resummation

e (Logs of Q71)/Q~ to all orders

How? Variant factorization and separation of variables

g and g “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and @ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section
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Summarized by: Qp-factorization (Collins-Soper):

doNN_QX
dQd?Qr
= [ d¢&1déa d°kypd*kord? ke 0 (Qr — ki1 — kor — Ks)
X H(£1p19 §2p2, Qan)a&%Q—FX
XPa/N(€19 pi-n, le) P&/N(€29 p2-n, kZT)
X Uaﬁ(ksTv n)

The P’s: new Transverse momentum-dependent TMD Dis-
tribution:
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e An operator definition

2
ANC 27 (27)2

X (H(p)|a@s(07, A, b)y - u g¢(0)|H(p))

¢ In this case, the gauge links distinguish initial and final states
as above: see new form by John Collins

(As in Aybat and Rogers, 2011).

Priu(z,k,p-n,e) =
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Also need U (b) = fdea(eik)(ﬁ,Q,k, €): “soft function” for
wide-angle radiation

2 .
Uga(ksT,m) = /(;17:))2 tb-ksr
« Ty (0| T wed )] T wedm) o).

d(c)

wed (x) = 35D (0, —00; X) B (0, —o0; X)

e Can be absorbed into the definition of the TMDs for one
process: DY for example (Collins).
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e Symbolically:

doNN QX

deZQT = H X Pa/N(€19p1 - n, le) P&/N(€29p2 - n, kZT)
®£i9kiT Ua&(ksTv n)

We can solve for the k7 dependence of the P’s.

New factorization variables: n/' apportions gluons k:

p;,-k<n-k = k €P;
Pa k.pg-k>n-k = kelU

Convolution in ki,Ts = Fourier e'¥T°b
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e The factorized cross section in “impact parameter space”:

donN—Qx(Q, D)
dQ

= [ d§1d€2 H(§1p1, 202, Qsn)aa—0Q+X

XfPa,/N(éla p1-n, b) Pa/N(g% p2 - 1, b) Ua&(ba n)

Now we can solve for b dependence just by separating vari-
ables!

the LHS independent of piyen, 1 = two equations



¢ Solve and transform back to Q7: all the (Logs of Q7)/Q:

do N Nres d?b )b
dQ2 d20 =2 aa(QS(QZ))/(Z )2 QTP e {EPT(b Qa#)]

dAa,& - Q’
X Y ey 7 _>“+“déQ2)+X( #) fa/N(€1,1/b) fa/n(&2,1/D)

a=qq

“Sudakov” exponent suppresses large b <> small Q7:

2 de
BoE = — 32 55 [24q(as(kr)) In (Q ) + 2Bg(as(kr))

With B = 2(K + G),—p.n, and lower limit: 1/b (NLL)



e Comments:

The functions A;(as) and B;(as) are anomalous
dimensions.

And can be calculated by comparison to low orders.

In particular, A;(as) is the numerator of
the 1/(1 — x) term in splitting function P;;(x)

because it’s the infrared divergent (z — 1) coefficient of
the collinear b — oo singularity.



¢ Evaluating a resummed cross sections: re-enter NPQCD.

We start with:

wPT _ dk Q2 |
/1/1,2 2 2A4(as(kr)) In - Bg(as(kr))
T T
With running coupling:
as(Q) 47

aS(kT) o (QS) k2 — kt

14 @ ﬁoln(@T) Bo In| 3T

QCD

Singularity in integral at

= Q? exp[—4n/Boas(Q)] ~ A12




e Problem: how to do the inverse transform with the
running coupling when k7' ~ 1/b gets small?

e A whole bunch of approaches:

1) Work in Qpr-space directly to some approximation
The originals: Dokshitzer, Diakanov & Troyan
Revived by Ellis & Veseli Kulesza & Stirling

who re-derived it from b-space.

2) Insert a “soft landing” on the k7 integral by replacing
1/b — \1/b2 4 1/b2
for some fixed b.. (CS, CSS “b.” prescription, ResBos)




3) Extrapolation of EF'T into NP region (Qiu, Zhang).

4) Minimal: avoid the singularity at 1/b = Aqcp

by monkeying with the b-space contour integral.
(This technique introduced in threshold resummation;
then adapted by Laenen, GS and Vogelsang,

and Bozzi, Catani, de Florian and Grazzini.)

¢ 5) Effective theory (SCET) treatments (Stewart, Tackmann,
Waalewijn et al, Becher and Neubert, Petriello and Mantry).
Multi-step evolution in momentum rather than moment/impact
parameter spaces.

Any of these “define” PT. All will fit the data
qualitatively, and with a little work quantitatively.

But at low Q7 require new parameters for quantitative fit.
This is not all bad .. .let's see why.
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e Window to nonperturbative distributions:

1 2d2kT Q2
ESOft — k | 1b- kT —1
27.‘. O kT q(()ls( T)) nn kT ( )
de Q2
~ = BT (b k) Ag(as(hr) n| 3,
T T

2 Q*
~ — b% [ dk% Ag(as(kr)) In By

T

+ ..

6(kr — 1/b) = (e'®KT — 1); in fact, correct to all orders,

Note the expansion is for b “ small enough” only.



What is  — b2 1 dk2 Ag(as(kr)) In (g) ?

e Related to dU (b)/db? and

e Suggests a nonperturbative correction of the form
(exhibiting the p is unconventional)

Q
ENF = — b%pg (91 In [J + gz)
1155

Since this is an exponent, whatever the definition

of the pertrubative resummed cross section, it is
smeared with a Gaussian whose width in b (k) space
decreases (increases) with In Q).



In summary

do(Qr) ) o FY iGrE EPT(6,0.m)
aQzarGy ~ a e @D (T

— pib(g1 ln( Q )4—92)

X

d&a& + (Qa“)
X azqq Jeq & —H Md é@z)ntX
X fa/N(&1,1/b) fg/n(&2,1/D)

e~ k7/411(92 m(Q/kr)+92)] dor nra(QT — k)

= 7 [ d*kp

13(g2In(Q/kT) + g2) dQ? d2Qr

Which gives curves like the one we saw before.



6. A Few concluding Comments

e Factorization in quantum field theory is closely related to clas-
sical considerations.

e Differences between initial- and final-state gauge links are
consistent with this factorization.

e There is a well-developed theory of factorization for Drell-Yan,
including transverse momentum dependence.

e The ‘QCD-inclusive’ nature of Drell-Yan production maintains
the underlying factorization.

e Nonperturbative effects play an essential role at low Q7 and
should be thought of as an integral part of the formalism.

e The stage is set for a new phenomenology to explore the
transverse-momentum dependent and spin-sensitive parton
distributions.



