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The basic idea of PDFs is achieving a factorized description with soft and hard parts, soft parts being
portable and hard parts being calculable. In the leading contributions at high energies, the PDFs can
be interpreted as probabilities. Beyond the collinear treatment one considers not only the dependence
on partonic momentum fractions x, but also the dependence on the transverse momentum p, of the
partons. Experimentally, transverse momentum dependent functions (TMDs) provide a rich
phenomenology of azimuthal asymmetries for produced hadrons or jet-jet asymmetries. Furthermore
inclusion of transverse momentum dependence provides an explanation for single spin asymmetries.

An important issue is the universality of TMDs, which we study for some characteristic hard processes,
where we focus on the pecularities coming from the color flow in the hard part. This color flow in the
hard process gives rises to a variety of Wilson lines in the description of the cross section. These give
rise to color entanglement, in particular in situations that the color flow is not just a simple transfer of
color from initial or final state.

We argue that these Wilson lines can be combined into the appropriate gauge links for TMD correlators
in cases where only the transverse momentum of partons in a single (incoming) hadron is relevant (1-
parton un-integrated or 1PU processes). Such a situation occurs in single weighted cross sections,
which consists of a sum of 1PU processes or if absence of any polarization makes all explicit transverse
momentum effects vanish. For 1PU processes one finds TMDs with a complex gauge link structure
depending on the color flow of the hard process. In the case of single weighted cross sections the
results are the gluonic pole or Qiu-Sterman matrix elements appearing with calculable color factors.
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Introduction

.

e Isolating hard process (factorization)

— Study of quark and gluon structure of hadrons

— Account for hadronic physics to study hard process
e Beyond collinear approach

— Include mismatch of parton momentum p and xP (fraction of
hadron momentum)

— TMDs with novel features
e QOperator structure of TMDs
— Color gauge invariance as guiding principle
— Appearance of TMDs in hard processes
— Gauge links in 1-particle un-integrated (1PU) processes

INTRODUCTION




Hard part: QCD & Standard Model

g

& QCD framework (including electroweak theory) provides the machinery
to calculate transition amplitudes, e.g. g*q — q, 9q — g*, g* — dd, qqg
— q9g, qg — qg, etc.

Example:

d9 — qg

& Calculations work for plane waves
(0w ()] p.s)=ui(p,s)e™

External particles: U. (P, S) U, (p,s)=(p+ m)ij

HARD PROCESS




Soft part: hadronic matrix elements

g

e For hard scattering process involving electrons
and photons the link to external particles is,
indeed, the ‘one-particle wave function’

(ol (£) p.s) =u(p.5) e ¥

e Confinement, however, leads to hadrons as
‘sources’ for quarks

(X |y )P e
* ... and 'source’ for quarks + gluons
<X ‘WI (é:) A (77)‘ P> e+i(p—p1).§+ip1.;7

e _..and...

INTRODUCTION




Soft part: hadronic matrix elements

.

Thus, the nonperturbative input for calculating hard processes
involves [instead of u,(p)u;(p)] forward matrix elements of the form

®,(p,P) = j(Z)ZE <P|7;(0)| X >< X |y, (0) [P >5(P-P, — p)
/'

quark felp§<P|l//,(O)’;V.(§)|P>

momentum (272.)

<Ply; QA () v ()| P>

INTRODUCTION




PDFs and PFFs

.

Basic idea of PDFs is to get a full factorized description of high
energy scattering processes

Kl/f 6- :| H (p11 p2 , ) |2 calculable

defined (!)
&
portable

o (P, Py,..) =[[[ . dp,.. @, (py, P 1) ® Dy (py, P 1)
Give a meaning to ®6ab,c...(p11 p21---;,u) ®Ac(k1, Kli,u)----

integration variables!




Ralston and Soper 79, ...

Example: Drell-Yan process

D ..u(p,,s)(p,,s)
— (D(pppl) - (p1+m)f(p1)

e High energy limits number of soft matrix elements that contribute
(twist expansion).

 Expand parton momenta (for DY take e.g. n=P,/P,.P,)
p=xP*+ p; +on” X=p " =pn-~1

/ N

~Q ~M ~MZQ
e For meaningful separation of hard and soft, integrate over p.P and
look at ®(x,p;). This shows that separation fails beyond ‘twist 3'.

(NON-)COLLINEARITY

c=pP-xM2~M?




Jaffe (1984), Diehl & Gousset (1998), ...
Integrated quark correlators:

collinear and TMD

O

@ Rather than considering general correlator ®(p,P,...), one integrates
over p.P = p~ (—My?, which is of order M?)

d(&P)A°E ipe
(27)’

@ and/or p; (which is of order 1)

®j(x;n) = J‘%ei " (P17 Oy ()P, s o

(P|w;(0)w; (&) > TMD
lightfront

O} (x, prin) = |

collinear

lightcone

@ The integration over p- = p.P makes time-ordering automatic. This
works for ®(x) and ®(X,p;)

@ This allows the interpretation of soft (squared) matrix elements as
forward antiquark-target amplitudes (untruncated!), which satisfy

particular analyticity and support properties, etc.




Boer & Vogelsang

Relevance of transverse momenta?

|

& At high energies fractional parton momenta fixed by

kinematics (external momenta

P, = X P+ pj; ( )
~ P P
P, = szz + Por DY X/ =Pp;.N= D1 = .
RP  R.R

& Also possible for transverse momenta of partons
DY O =q—XF —XF, =Py + Py
2-particle inclusive hadron-hadron scattering

-1 -1
Or =2, K +2,7K, =X B —X,P,

\a.
s
= Pir + Por _kl _sz §
&

75 Koy

Care is needed: we need more than one
hadron and knowledge of hard process(es)!

NON-COLLINEARITY

pp-scattering




Oppertunities of TMDs

o

& TMD quark correlators (leading part, unpolarized) including T-odd part

[+]q _ v 2 -1 1q 2 /IZT Jj
O (X’ pT) o (fl (X1 pT)iIhl (X1 pT) M j 2

& Interpretation: quark momentum distribution f,9(x,p;) and its
transverse spin polarization h,*%(x,p;) both in an unpolarized hadron

@& The function h,*(x,p;) is T-odd (momentum-spin correlations!)

& TMD gluon correlators (leading part, unpolarized)
14 1 v Py +l a
DL (X, py) = 5[—% f9(x, p?){ Vi ]hfg(x, pﬁ)j

& Interpretation: gluon momentum distribution f,°(x,p;) and its linear
polarization h,*9(x,p;) in an unpolarized hadron (both are T-even)

(NON-)COLLINEARITY




Twist expansion of (non-local) correlators

./

& Dimensional analysis to determine importance of matrix elements
(Just as for local operators)
& maximize contractions with n to get leading contributions

dim[y (O)ny (5)] =2
dim[F™ (0)F"(£)]=2

& ‘Good’ fermion fields and ‘transverse’ gauge fields
& and in addition any number of n.A(§) = A"(x) fields (dimension zero!)
but in color gauge invariant combinations

dmo: 10" —ID" =i0" + gA"
dim1: 107 = ID{ =107 + gA’

& Transverse momentum involves ‘twist 3'.

OPERATOR STRUCTURE




Soft parts: gauge invariant definitions

-
..

@ Matrix elements containing A, (gluon) fields produce gauge link

¢
C .
U[[0 !Z] =7 exp (—'QI dSﬂAﬂj Any path yields a
0 (different) definition

@ ... essential for color gauge invariant definition

PP =[5 (’K e (P|y7; U4 () P)

OPERATOR STRUCTURE




A.V. Belitsky, X.Ji, F. Yuan, NPB 656 (2003) 165
D. Boer, PJM, F. Pijilman, NPB 667 (2003) 201

Gauge link results from leading gluons

kp Kk
@7 /Q_"“_" /@3*"*"*
4566’665 4 ﬁﬁ
p, P,

o 2 B PP,

Expand gluon fields and reshuffle a bit:
MU

AU(P) = NAR) S +HIA(R) . = ——[ A (p,) B +GP(P) +.

1!

Coupling only to final state
partons, the collinear gluons

add up to a U, gauge link,
B (with transverse connection
T i from A* = Gne reshuffling)

OPERATOR STRUCTURE




Gauge-invariant definition of TMDs:
which gauge links?

.

d(? )dng |p§
(27)°

d7 (x;n) = I%ei "< (P|w. (O)U[[g]ﬂ v, (&) P>§.n:§T " collinear

@ Even simplest links for TMD correlators non-trivial:

. "
e LS

o= & - & i

[-] .
® < ® E:_ T i :_ g5

055, ) (P17, OUEL NP0 T

DI+

These merge into a ‘simple’ Wilson line in collinear (p -integrated) case

OPERATOR STRUCTURE




Featuring: phases in gauge theories

remnant/spectator

P
1|I" hadron
electron
electron hadron
jet s
V(x)|py
b4 solenoid rermmant/spectator
VR
. ie|ds.A —igIXXIdsﬂA/‘ .
y'=Pe I /4 l//i(x)‘P>:Pe Wi(X)‘P>

COLOR ENTANGLEMENT




C Bomhof, PJM, F Pijiman; EPJ C 47 (2006) 147
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301

TMD correlators: gluons

.

(Daﬂ[CC](X D ) J‘d(é )dzéT gl P

(27)’

(PUizaF™ (OG5 Y (@)IP)..,

@ The most general TMD gluon correlator contains two links, which in
general can have different paths.

@ Note that standard field displacement involves C = C

F(8) > UL F (U

[7.¢] [$.7]
@ Basic (simplest) gauge links for gluon TMD correlators:
gT F:T
- o — o e 1 ®
q) [+’+] @ [_9_]
g - é— e — g — " é_
éT F;T
. 1 g i oo = .&
@ [+9_] Qg [_’+] -
g —— é— = —— =

OPERATOR STRUCTURE



Gauge Invariance for DY

v(S,)  w(0,) Upo, oY e Y1, oY 100,
=W, W o, ey =W [ W p, ]

Strategy:
transverse moments

v(&)  w(0)

dop, =Tr, W[ p, D, (X, P )ITEID, (X, P )W [p,1] 1T

= (I)Eq_] (Xl’ plT ) CD[q_T] (XZ’ pZT) O’\-qq—n/

Employing simple color flow possibilities, e.g. in gg =2 vy
J. Qiu, M. Schlegel, W. Vogelsang, ArXiv 1103.3861 (hep-ph)

COLOR ENTANGLEMENT




T.C. Rogers, PJM, PR D81 (2010) 094006

u Complications (example: gq > qq)

B
U+[n] [pl;pzak]_] \ k— P k k

modifies color flow, /®1<_“” —dp—- }@ _%131@, 58 /@ Y -
spoiling universality 7Y 2 ﬂggﬁgff 1 o7 o™ 7 .

(and factorization) P Py

[ | . 1 ' '
WIS (p, p).. Lo (p)--w(p) =§{U£E.3(”(p),U£‘§3“)(p )} (p)..y(p)




[ e PPP, B pPP BTR
(a) (c)

coor }f f;f

/&m /% ﬁ /f%ﬁ
“«J/__

entanglement
PR S " PR g s P

: I
| :
: I
| 1 ' I
: + ZUIE (UL ()T (p)
: . |
: FZUMR(pIUMA(p)
I

COLOR ENTANGLEMENT




M.G.A. Buffing, PJM; in preparation

Color disentanglement for 1PU

v (S,) . w(0,)

Collinear treatment for
all-but-one parton (p,):

§2t — OZT

o ~Tr [0 (x, py)T,A(Z)T,]
T ()T A(2,)]

U

U[Oz1+°°][011+°°]U[+°0’§2][+°0’§1]U[§11—°O] [—00’01]: [0,,¢,1" "+[0,,4]1 " 104,&4]

VYA Y VA YAk ZW[n][pz]WD[n][pl]
U, U U U, .=Uy U, . =W

[-00,0,]7[09,+0][0;,+00] ™ [+00,&1 J[+00,5, 1 [&5,—0] [04,+00]™ [+0,&1] +[01,81]

COLOR ENTANGLEMENT




1-parton unintegrated

./

e Resummation of all phases spoils universality

e Transverse moments (p-weighting) feels
entanglement

FQ —
e Special situations for only one transverse

momentum, as in single weighted asymmetries T, —» @@@

szqT q?---szplT _[dzpzT "'52(qT —Pir — pZT)
= [d?py pf [d?pyr. + [d®pyr [d?pyr P

e But: it does produces ‘complex’ gauge links

» Applications of 1PU is looking for gluon h;*9
(linear gluon polarization) using jet or heavy

guark production in ep scattering (e.g. EIC),
D. Boer, S.J. Brodsky, PJM, C. Pisano, PRL 106
(2011) 132001

COLOR ENTANGLEMENT




M.G.A. Buffing, PJM; in preparation

Full color disentanglement? NO!

o x Tr,[@ 1 (p,)[ A (k)T ]
XTrC [(I)[(D)+] ( pz)rb*A[(D)_T] (kz)ra]
Loop1: U U U U wil oyl it

[0,,+00][0y,+00] " [+00,& 5 ][+00,&5 ] [&,—0] [—00’01]: +[0,,8,1" "+[01,4]1" " —1[01,61]

=W "[p,]W"[p,]




Result for integrated cross section

do ~
~ Z (D[Cl(D)](X1 plT)(I) (X) gtg)ic AC(ZI)"' (1PV)

d plT D,abc

Collinear cross section

X (x) = [d2p. ®IC(x Gauge link structure
(X) J- Pr (X pr) becomes irrelevant!

o~ Zq)a(xl)q)b (X2) Oy e Ac(Z1)-

abc

Ohse. — Z gblc ~ (partonic cross section)

APPLICATIONS




. Result for single weighted cross section

do

= D D, Py ) Dy (X,) G Ac(Z) (1py)

2
d plT D,abc

Single weighted cross section (azimuthal asymmetry)

O;I(x) = [d*p; py @ (x, pr)

(pio) ~ 3 DU x)D, (x,) 612, A,(2)..

D,abc

APPLICATIONS




Result for single weighted cross section

.

do 3
-~ Z (I)I;IC:L(D)] (X11 p]_T)CI)b(XZ) G{Elll)jl)c AC(Zl) (1PU)

2
d p1T D,abc

0 0) =~ 2, DI (XD (X,) G e Ac(2))-

o) =W O (X ) D, (X,) Goe. A(2).

o) ~ BEOTEN (X )P, (X,) 6o A (2).-

o) = PP OTEPN(X) D, (%,) 6o A(2).
D,abc

APPLICATIONS




Qiu, Sterman; Koike; Brodsky, Hwang, Schmidt, ...

Result for single weighted cross section

.

d VaN
47p ~ng DN (x p YD, (x,) L, A (2).- 0
1T abc
(pro)~ 3 DICCI(x)D,(x,) 621, A (2)..
D,abc

O (x) = D (x) + CL Ol @™ (%, x)

\ /

T-even universal matrix T-odd
elements (operator structure)

D, (x,Xx) Is gluonic pole
(X, = 0) matrix element
(color entangled!)

APPLICATIONS




Result for single weighted cross section

./

do

= D D, Py ) Dy (X,) G Ac(Z) (gpy)

2
d p1T D,abc

(pro)~ 3 OO D, (x,) 62, A (2,).

D,abc
O (x) = D (x) + CL Ol @™ (%, x)

N\ /

universal matrix
elements

Examples are:
+ __ -1 + __ + __
C V1 =1,C V1 =-1,C /WU =3, C,MWUTT =N

APPLICATIONS




Result for single weighted cross section

.

d VaN
47p ~ng OO, p ) Dy (%) 6L AZ) gy
1T abc
(pao)~ 3 OIECI(x)D,(x,) 621, A (2)..
D,abc

O (x) = D (x) + CL Ol @™ (%, x)

(p5 o) ~ T DD, (X,) G e An(2)--

abc

+ > 7D, (%, %) Py (X,) Grappe. A (2))...  T-odd part

abc

~ [U(C(D))] [D] | ' |
e C (gluonic pole
[a]o—c.. Z Tabsc. cross section)

APPLICATIONS




Higher p; moments

«

e Higher transverse moments

NI (x) =Id2pT (p%...p% —traces) d(X, p;)
e involve yet more functions

O (x), DI (X, X), DL (X, X,X)

e Important application: there are no complications for fragmentation,
since the ‘extra’ functions Ag, Agg, ... vanish. using the link to
‘amplitudes’;

L. Gamberg, A. Mukherjee, PJM, PRD 83 (2011) 071503 (R)

e In general, by looking at higher transverse moments at tree-level, one
concludes that transverse momentum effects from different initial
state hadrons cannot simply factorize.

SUMMARY




Conclusions

«

e Color gauge invariance produces a jungle of Wilson lines attached to
all parton legs, although the gauge connections themselves have a
nicely symmetrized form

e Easy cases are collinear and 1-parton un-integrated (1PU)
processes, with in the latter case for the TMD a complex gauge link,
depending on the color flow in the tree-level hard process

e Example of 1PU processes are the terms in the sum of contributions
to single weighted cross sections

e Single weighted cross sections involve T-even ‘normal weighting’
and T-odd gluonic pole matrix elements (SSA’S)

e Gluonic pole matrix elements in fragmentation correlators vanish,
thus treatment of fragmentation TMDs is universal (physical picture:
observation of jet direction)

e Furthermore, there is the issue of factorization! (next talk)

SUMMARY




“ Thank you
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