

Relativistic Heavy Ion Collider 1 of 2 ion colliders (other is LHC), only polarized p-p collider

IP10

2 superconducting 3.8 km rings2 large experiments100 GeV/nucleon Au

IP2

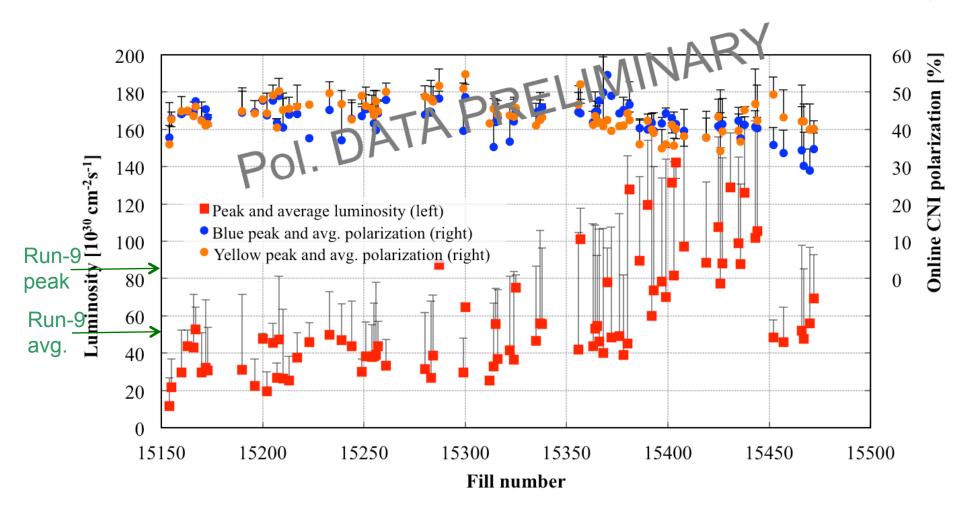
250 GeV polarized protons

Performance defined by

let Target

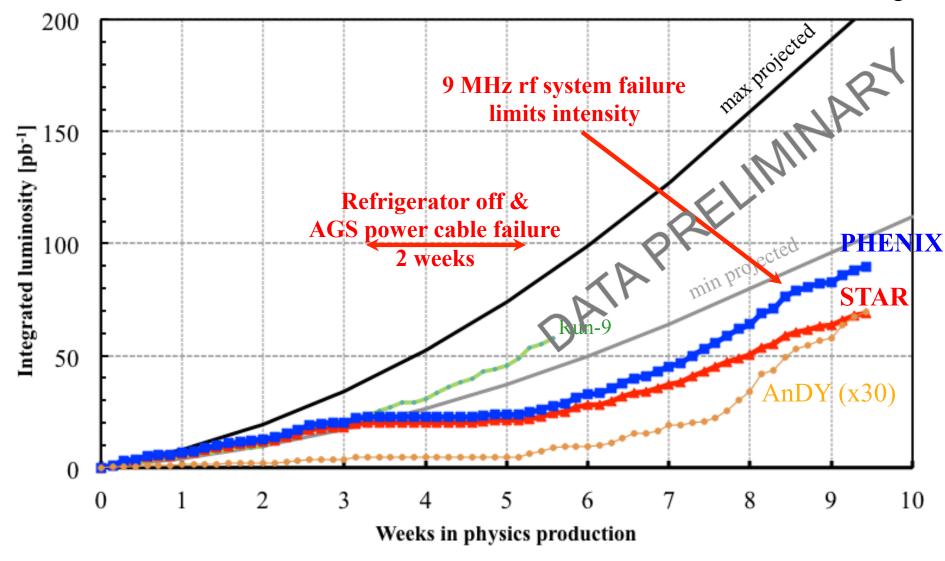
- 1. Luminosity L
- 2. Proton polarization P
- 3. Versatility

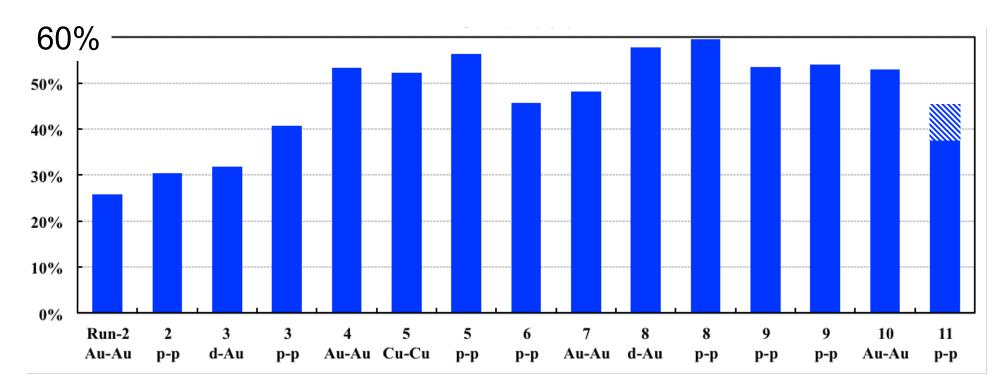
Au-Au, d-Au, Cu-Cu, polarized p-p (so far) 12 different energies (so far)


Content

- 1. Run-11 polarized proton performance Impact of A_nDY, future operation
- 2. Future developments for polarized protons
- 3. Asymmetric collisions (d-Au and p-Au)
- 4. Energy upgrade
- 5. Polarized ³He (p-³He, ³He-³He)

Run-11 250 GeV store overview – polarization and luminosity


Run Coordinator: Haixin Huang



Run-11 polarized proton luminosity \sqrt{s} = 500 GeV

Run Coordinator: Haixin Huang

Run-11 polarized proton time-in-store (% of calendar time)

- Time-in-store lower than in previous runs
- No common reason identified for reduced time-in-store
- 2 largest events (refrigerator off, AGS power cable) account for 9%
- Effect on performance stronger than linear (scheduling difficult, less time for implementation of improvements, more time re-establishing machine)

Unusual events in 250 GeV polarized proton Run-11

- Total of 6 snow days during start-up (>20 h excused time in January)
- Fast emittance growth in Blue ring (intermittently observed in 2007 and 2009, tracked down to loose wire in dump kicker thyratron module B), delayed physics by about ¹/₂ week
- Breaker trip on 03/07/11 leads to refrigerator shut-off and helium venting in 2:00 and 6:00 service buildings, loss of about 3.5 tons of He, after repair encounter difficulties in purchasing replacement He, operation re-established on 03/17/11 – 219h downtime
- Power cable failure shut-down most of AGS equipment and part of building 911 – 78h downtime
- New 9 MHz RF system breaks 1 week before run end (current shield for bellows failing leading to overheating), cutting luminosity in half

Run-11 peak polarization and luminosity

Run Coordinator: Haixin Huang

		Run-9 achieved	Run-11 achieved	Run-11 projections
Polarization P	%	35*	46 *	35-50*
Peak luminosity L_{peak}	$10^{30}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	85	145*	85-170
Avg. store luminosty L_{avg}	$10^{30}{\rm cm}^{-2}{\rm s}^{-1}$	55	90 *	55-100
Luminosity per week L _{week}	pb ⁻¹	18	25	18-35
Time-in-store	%	53	37 (46**)	55

* Online H-jet measurement (average over transverse profile)

* Average of 6 best stores.

** Excluding down time due to refrigerator and AGS power cable failure.

- Good progress with peak performance
- Overall performance held back by reduced reliability
- Established operation of A_nDY with small impact on STAR/PHENIX

Main improvements for polarized protons in Run-11

AGS

- Magnets surveyed and adjusted horizontally (P+)
- Horizontal tune jump quads operational (reduced *P* profiles, *P* +5%)
- Access Control System rebuild after fire on 11/09/11

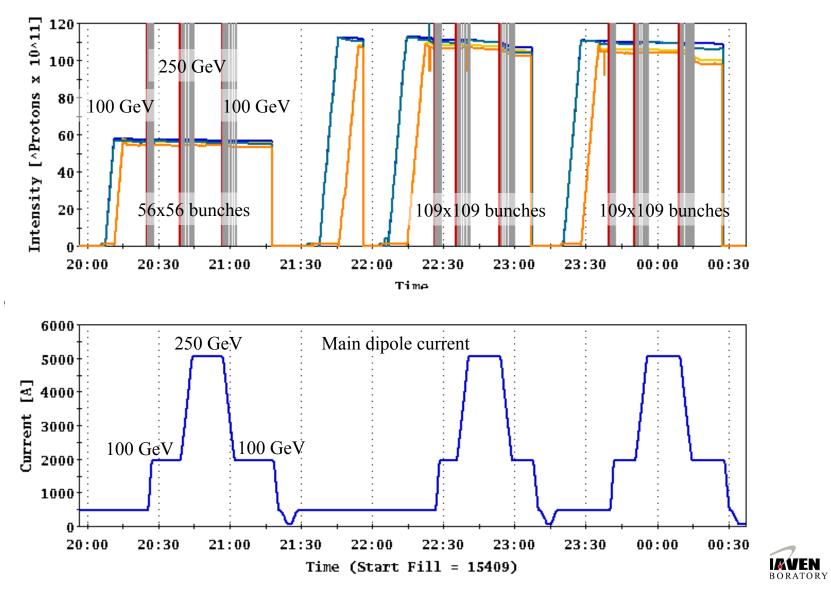
RHIC

- Magnets surveyed and adjusted vertically (P+)
- New auto-transformer in Blue to reduce flattop-to-ramp MMPS transients (needed for 9 MHz rf, had done Yellow previously) (P+)
- Yellow snake installed in sector 9 after repair
- Inserts installed in beam dump (19 pieces, 12.7 cm long), allowed for higher intensity, at limit in Run-9 (Q4 quench without) (L+)
- 2 common storage cavities moved to sector 3,
 2 more cavities installed => allows for permanent 9 MHz cavity (L+)

Main improvements for polarized protons in Run-11

RHIC

- 2 storage cavities permanently converted to 9 MHz,
 1 bouncer cavity install in each ring (9 MHz) (P+, L+)
- Current limit for tq increased from 100 A to 140A IR6 to IR8 (L+)
- Collimation on ramp with continuous set point changes (L+)
- RHIC CNI polarimeters with new electronics (mitigates rate dependence)
- First H-jet polarization measurement at injection

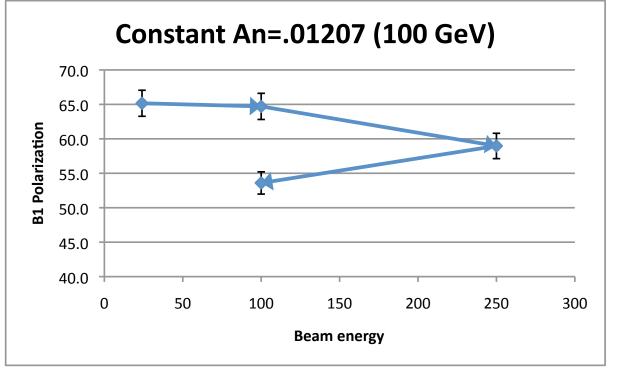

RHIC beam and optics control

- All ramps with orbit, tune, and coupling feedback (P+, L+)
- Ramps $Q_v = 0.673$ (near low order resonance) (P+)
- Radial loop control via all BPMs (previously only 2) (P+, L+)
- Octupoles on ramp to suppress instabilities (L+)
- Operational use of 10 Hz orbit feedback in store (*L*+)
- First use of beta-beat correction in operation (*L*+)

[Note: also have upgrade for heavy ions, particularly for stochastic cooling.]

Down ramp with polarized protons in Run-11

Setup and <u>3 up and down ramps with up to 109x109 bunches</u> in only 2 shifts (simultaneous orbit/tune/coupling/chromaticity feedback essential)

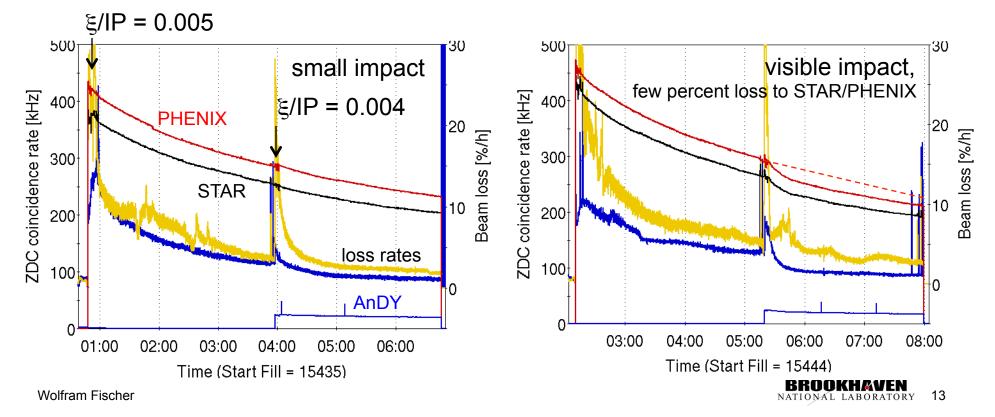

11

Wolfram

Down ramp with polarized protons in Run-11

Summary T. Roser

- From H-jet calibration of pC polarimeter at 100 GeV and 250 GeV there is ~30% (relative) loss of polarization between 100 GeV and 250 GeV (~65% -> 45%)
- Varying many parameter on energy ramp that should change polarization if there is a polarization loss had no effect on polarization (snake currents, vertical tune, horizontal tune, vertical chromaticity, momentum spread, blue vs. yellow)
- Up/down ramp will independently measure polarization loss between 100 GeV and 250 GeV



100 GeV: $R_{up}/R_{down} = 0.80 \pm 0.02$ Pol. trans. on up ramp: 0.89 ± 0.01 If P(250) = 46 % then P(100) ~ P(24) = 52% ?? If P(24) ~ P(100) = 65% then P(250) = 58%

A_nDY in Run-11 (250 GeV pp)

- Beam envelope function $\beta^* = 3.0$ m at IP2
- Reduced IP2 crossing angle from initially 2.0 mrad to zero
- Added 3rd collision with following criteria (last instruction):
 - 1. $N_{\rm b} \le 1.5 \times 10^{11}$
 - 2. Beam loss rate <15%/h in both beams
 - 3. Not before first polarization measurement 3h into store

Future operation of A_nDY

• Can reduce β^* at IP2

have run with β^* = 2.0 m previously for BRAHMS β^* = 1.5 m probably ok, needs to be tested

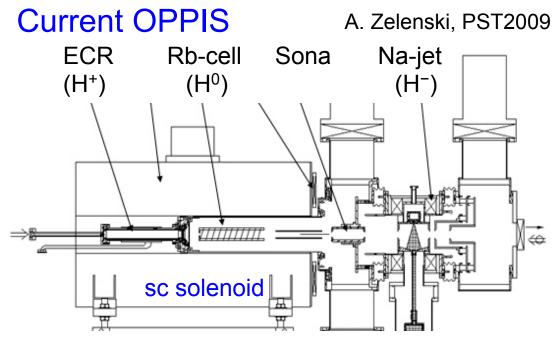
• Longer stores

10h instead of 8h in Run-11 (depends on luminosity lifetime and store-to-store time)

- Collide earlier in store when conditions are met
 needs coordination with polarization measurement, PHENIX and STAR
- Electron lenses (see later) if A_nDY runs beyond Run-13 increases max beam-beam tune spread, currently ΔQ_{max,bb} ≈ 0.015 can be used for to increase ξ~N_b/ε and/or number of collisions

Run-11 luminosity at A_nDY: max ~0.3 pb⁻¹/store

With improvements: ~3x increase, ~10 pb⁻¹/week


[all preliminary]

Future upgrades for polarized protons

- Power supplies upgrades/replacements (*T*)
- Reliability upgrades in other areas (*T*)
- 9 MHz upgrade for more intensity (*L*)
- Different tunes (*P*,*L*) (near-integer tune is option since 10 Hz feedback operational)
- Spin flipper (*P*)
- Lower β^* (*L*) (requires $\Delta\beta/\beta$ and Q"/Q" correction)
- Polarized source upgrade (*P*, *L*) [Run-13]
- Electron lenses, partial head-on beam-beam compensation (L) [Run-13]
- 56 MHz SRF (*L*) [Run-14]
- Instrumentation upgrades (*L*,*P*)
- In-situ beam pipe-coating coating (L)

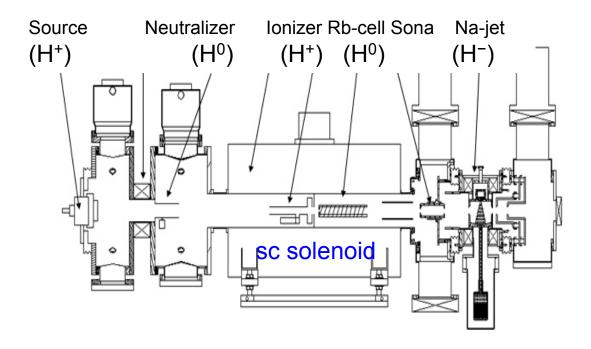
Focus of this year's RHIC Retreat

Optically Pumped Polarized H⁻ source (OPPIS)

29.2 GHz ECR source used for primary H⁺ generation
source was originally developed for dc operation

RHIC OPPIS produces reliably 0.5-1.0 mA polarized H⁻ ion current.

Polarization at 200 MeV: P = 80-85%.


Beam intensity (ion/pulse) routine operation:

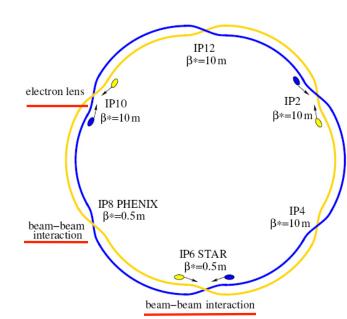
- Source 10¹² H⁻/pulse
- Linac 5x10¹¹
- AGS 1.8-2.0x10¹¹
- RHIC 1.8x10¹¹/bunch

Optically Pumped Polarized H⁻ source (OPPIS) – A. Zelenski

Upgraded OPPIS (Run-13)

10x intensity increase was demonstrated in a pulsed operation by using a very high-brightness Fast Atomic Beam Source instead of the ECR source

Goals:


 H⁻ beam current increase to 10mA (order of magnitude)
 Polarization to 85-90% (~5% increase)

Upgrade components:

- 1. Atomic hydrogen injector (collaboration with BINP Novosibirsk)
- 2. Superconducting solenoid (3 T)
- 3. Beam diagnostics and polarimetry

Electron lenses – partial head-on beam-beam compensation

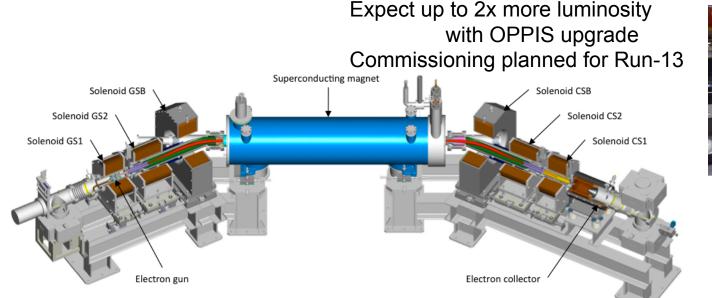
Polarized proton luminosity limited by head-on beam-beam effect $(\Delta Q_{bb,max} \sim 0.02)$

Basic idea:

In addition to 2(3) beam-beam collisions with **positively** charged beam have another collision with a **negatively** charged beam with the same amplitude dependence.

Exact compensation for:

- short bunches
- $\Delta \psi_{x,y}$ = k π between p-p and p-e collision
- no nonlinearities between p-p and p-e
- same amplitude dependent kick from p-p, p-e
- only approximate realization possible

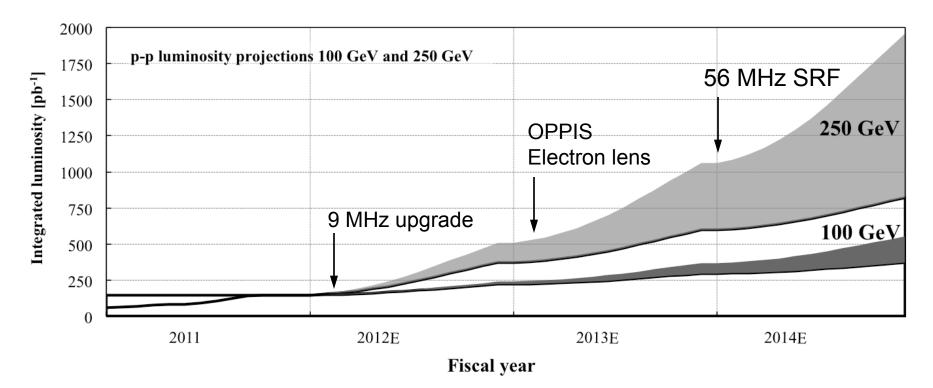


main solenoid

manufacturing in SMD

GS1 manufacturing

inlindustry


Wolfram Fischer

Summary – RHIC luminosity and polarization goals

Parameter	Unit	Achieved	Upgraded	
Au-Au operation		(2010)	(>=2012)	
Energy	GeV/nucleon	100	100	
No of bunches		111	111	
Bunch intensity	109	1.1	1.0	
Average L	10 ²⁶ cm ⁻² s ⁻¹	20	40	
<u>p↑-p↑ operation</u>		(2011)	(>=2012)	(>=2014)
Energy	GeV	100 / 250	100 / 250	250
No of bunches		109	109	109
Bunch intensity	1011	1.3 / 1.65	1.3 / 1.5	2.0
Average L	10 ³⁰ cm ⁻² s ⁻¹	24 / 90	30 / 150	60 / 300
Polarization P	%	55 / 46	70	70

Polarized proton projections Run-12 to Run-14

[Assume 12 weeks of physics per run, 8 weeks linear luminosity ramp up.]

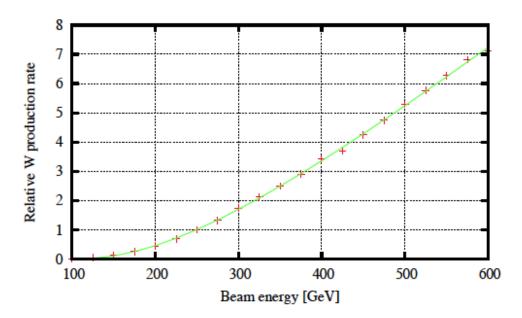
Asymmetric collisions (d-Au)

- Operated d-Au in Run-3 (2002/03) and Run-8 (2007/08) at full energy 101.9 GeV/nucleon d on 100.0 GeV/nucleon Au (γ_d = γ_{Au} = 107.4)
- Future gains in d-Au operation from 3-D stochastic cooling of Au beam reduction in β^{*}, increase in bunch intensity and number of bunches
- For energy scan need to match Lorentz factor γ of both beams

		Run-8 achieved	≥ Run-12 Max projections
Peak luminosty L_{peak}	$10^{28}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	25	37
Avg. store luminosty L_{avg}	$10^{28}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	12.5	22
Luminosity per week L _{week}	nb ⁻¹	40	75
Time-in-store	%	58	55

Asymmetric collisions (p-Au)

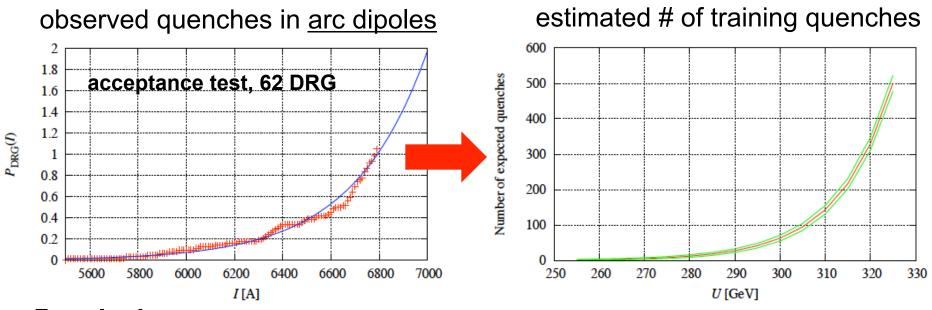
- p-Au was considered in RHIC design (D. Trbojevic), no operation yet 100.8 GeV p on 100.0 GeV/nucleon Au ($\gamma_p = \gamma_{Au} = 107.4$)
- Need to translate DX magnets horizontally by 4.33 cm p are bent stronger than Au⁷⁹⁺
- For energy scan need to match Lorentz factor γ of both beams


Parameter	unit	p-Au		p-Au	
No of bunches		111	111	111	111
Ions/bunch, initial	109	100	1.0	200	1.2
Average beam current/ring	mA	139	110	278	132
Stored energy per beam	MJ			0.36	0.42
β*	m	0.85		0.60	
Hour glass factor		1.00		0.91	
Beam-beam parameter ξ/IP	10-3	4.3	1.7	5.2	3.5
Peak luminosity	10 ²⁸ cm ⁻² s ⁻¹	30		95	
Average / peak luminosity	%	60		60	
Average store luminosity	10 ²⁸ cm ⁻² s ⁻¹	18		57	
Time in store	%	55		55	
Maximum luminosity/week	nb ⁻¹			189	
Minimum luminosity/week	nb ⁻¹	60			

Energy upgrade – W. MacKay, BNL C-A/AP/422

Motivations:

- 1. Increase in W production cross section
- 2. eRHIC



Main issues:

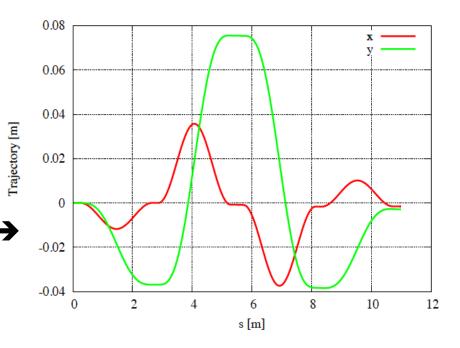
- Quench performance of magnets (DX, arc dipoles and quads, IR quads)
- Crossing angles at IPs and luminosity
- Polarization
- Current feedthroughs
- Power supplies and transformers
- Dump kicker (strength, pre-fires)
- Reliability generally reduced at higher energies

Energy upgrade – W. MacKay, C-A/AP/422

Conclusion:

- 10% increase to 275 GeV (+45% in σ_W) feasible with current magnets about 20 DX, 10 other training quenches, more cooling at some current leads
- Requires some hardware upgrades (dump kicker, power supplies)
- Effect on polarization still needs study
- Energies >275 GeV require too many training quenches hundreds of arc dipole training quenches alone for 325 GeV

Polarized d


 Polarized neutrons for RHIC and eRHIC could be in deuterons (d = ²H¹⁺) or ³He²⁺

	р	$^2_1\mathrm{H^+}$	$^{3}_{1}\mathrm{H^{+}}$	$^{3}_{2}\mathrm{He}^{+2}$
$M [{\rm GeV/c^2}]$	0.938272	1.875613	2.808921	2.808391
$\mu/\mu_{ m N}$	2.792847	0.857438	2.972962	-2.127498
G = (g-2)/2	1.792847	-0.142987	7.918171	-4.183963

- d <u>very difficult</u> at high energy (i.e. RHIC)
- Currently no technical solution for maintaining and rotating polarized deuterons (G = -0.14) in RHIC
- Siberian snake with $B_{out} = 33.5 \text{ T}, B_{in} = 101.6 \text{ T}$

Orbit excursion in snake for deuterons \rightarrow

[W. MacKay, CAD MAC-05, 09/15/2010]

Polarized ³He

[Summary W. MacKay, CAD MAC-05, 09/15/2010]

3 Deuterons not good in RHIC — perhaps in a figure-8 ring.

- Source: ³He⁺² OPPIS source proposal: Milner/Zelenski See Anatoli Zelenski's presentation.
- $|G\gamma|_{\text{max}}$ is higher for He³:
 - More and Stronger resonances in all rings.
- $\circ~^3\mathrm{He}$ polarimeters need to be developed.
- AGS cold snake may be sufficient at lower field. AGS warm snake (fixed field) might be too strong ($\sim 14\%$).
- AGS injection and extraction spin-matching: not too bad.
 - Booster to AGS may need matching (depends on AGS snakes).
- RHIC snakes and rotators will work with lower fields.
- Lower injection rigidity for RHIC should be OK.
 - Injection orbit excursions reduced.

Machine Advisory Committee Review Waldo MacKay 15 September, 2010

Polarized ³He source R&D

- Plans to start working on ³He source (MIT R. Milner, Mainz)
- 3 possibilities discussed to use EBIS (A. Zelenski, J. Alessi et al.):
 - 1. ³He production outside EBIS limits on field gradients
 - 2. ³He production inside EBIS space and maintenance issues, P source measurement
 - 3. Injection of ³He⁺ into EBIS
- In all cases EBIS ionizes to ³H²⁺
- Aim for 2.5x10¹¹ ions from EBIS, 1x10¹¹/bunch in RHIC
- Could collide ³He-³He or p-³He at γ_{max} = 178 (³He with 166.2 GeV/nucleon, p with 167.5 GeV)

Summary – RHIC performance

• Run-11 p^p results:

P > 46%, $L_{peak} = 150 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$, $L_{avg} = 85 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$ (all new records for peak performance, and all within Run-11 projections) Integrated luminosity below expectation due to down time A_n DY tested, ran with relatively small impact on STAR/PHENIX

- Main hardware upgrades for p[^]p[^] (commissioning planned for Run-13) Polarized source: P +5%, intensity +order of magnitude Electron lenses : up to 2x more luminosity with source upgrade
- Asymmetric collisions (d-Au and p-Au) Expect up 2x more luminosity for future d-Au operation rel. to Run-8 p-Au possible with change of DX location (γ_p = γ_{Au} = 107.4)
- Limited energy upgrade possible, 10% to 275 GeV protons Effect on polarization still needs study, requires hardware upgrades
- Polarized ³He (p-³He, ³He-³He)

Polarized ³He source R&D has started (with MIT, using EBIS) Acceleration and storage in RHIC should be possible ³He polarimetry at high (esp. absolute) needs R&D

